1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sample/StandardSample/SizeDistributionModelsBuilder.cpp
//! @brief Implements class ParticlesInSSCABuilder.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sample/StandardSample/SizeDistributionModelsBuilder.h"
#include "Param/Distrib/Distributions.h"
#include "Sample/Aggregate/InterferenceRadialParacrystal.h"
#include "Sample/Aggregate/ParticleLayout.h"
#include "Sample/HardParticle/Cylinder.h"
#include "Sample/Multilayer/Layer.h"
#include "Sample/Multilayer/Sample.h"
#include "Sample/Particle/Particle.h"
#include "Sample/StandardSample/ReferenceMaterials.h"
Sample* ExemplarySamples::createSizeDistributionDAModel()
{
// cylindrical particle 1
double radius1(5);
double height1 = radius1;
Cylinder cylinder_ff1(radius1, height1);
Particle cylinder1(refMat::Particle, cylinder_ff1);
// cylindrical particle 2
double radius2(8);
double height2(radius2);
Cylinder cylinder_ff2(radius2, height2);
Particle cylinder2(refMat::Particle, cylinder_ff2);
// interference function
InterferenceRadialParacrystal interference(18.0, 1e3);
Profile1DGauss pdf(3);
interference.setProbabilityDistribution(pdf);
// assembling the sample
ParticleLayout particle_layout;
particle_layout.addParticle(cylinder1, 0.8);
particle_layout.addParticle(cylinder2, 0.2);
particle_layout.setInterference(interference);
Layer vacuum_layer(refMat::Vacuum);
vacuum_layer.addLayout(particle_layout);
Layer substrate_layer(refMat::Substrate);
auto* sample = new Sample;
sample->addLayer(vacuum_layer);
sample->addLayer(substrate_layer);
return sample;
}
// ----------------------------------------------------------------------------
Sample* ExemplarySamples::createSizeDistributionLMAModel()
{
// cylindrical particle 1
double radius1(5);
double height1 = radius1;
Cylinder cylinder_ff1(radius1, height1);
Particle cylinder1(refMat::Particle, cylinder_ff1);
// cylindrical particle 2
double radius2(8);
double height2(radius2);
Cylinder cylinder_ff2(radius2, height2);
Particle cylinder2(refMat::Particle, cylinder_ff2);
// interference function1
InterferenceRadialParacrystal interference1(16.8, 1e3);
Profile1DGauss pdf(3);
interference1.setProbabilityDistribution(pdf);
// interference function2
InterferenceRadialParacrystal interference2(22.8, 1e3);
interference2.setProbabilityDistribution(pdf);
// assembling the sample
ParticleLayout particle_layout1;
particle_layout1.addParticle(cylinder1, 0.8);
particle_layout1.setInterference(interference1);
ParticleLayout particle_layout2;
particle_layout2.addParticle(cylinder2, 0.2);
particle_layout2.setInterference(interference2);
Layer vacuum_layer(refMat::Vacuum);
vacuum_layer.addLayout(particle_layout1);
vacuum_layer.addLayout(particle_layout2);
Layer substrate_layer(refMat::Substrate);
auto* sample = new Sample;
sample->addLayer(vacuum_layer);
sample->addLayer(substrate_layer);
return sample;
}
// ----------------------------------------------------------------------------
Sample* ExemplarySamples::createSizeDistributionSSCAModel()
{
// cylindrical particle 1
double radius1(5);
double height1 = radius1;
Cylinder cylinder_ff1(radius1, height1);
Particle cylinder1(refMat::Particle, cylinder_ff1);
// cylindrical particle 2
double radius2(8);
double height2(radius2);
Cylinder cylinder_ff2(radius2, height2);
Particle cylinder2(refMat::Particle, cylinder_ff2);
// interference function
InterferenceRadialParacrystal interference(18.0, 1e3);
Profile1DGauss pdf(3);
interference.setProbabilityDistribution(pdf);
interference.setKappa(1.0);
// assembling the sample
ParticleLayout particle_layout;
particle_layout.addParticle(cylinder1, 0.8);
particle_layout.addParticle(cylinder2, 0.2);
particle_layout.setInterference(interference);
Layer vacuum_layer(refMat::Vacuum);
vacuum_layer.addLayout(particle_layout);
Layer substrate_layer(refMat::Substrate);
auto* sample = new Sample;
sample->addLayer(vacuum_layer);
sample->addLayer(substrate_layer);
return sample;
}
// ----------------------------------------------------------------------------
Sample* ExemplarySamples::createCylindersInSSCA()
{
throw std::runtime_error(
"This sample used ParticleDistribution which is not supported any more.");
// #baRemoveParticleDistribution The following code is outdated. However, it is still kept,
// since it may be useful once the new particle distribution approach is implemented.
/*
Layer vacuum_layer(refMat::Vacuum);
InterferenceRadialParacrystal interparticle(15.0, 1e3);
Profile1DGauss pdf(5);
interparticle.setProbabilityDistribution(pdf);
interparticle.setKappa(4.02698);
ParticleLayout particle_layout;
Cylinder ff_cylinder(5.0, 5.0);
Particle particle_prototype(refMat::Particle, ff_cylinder);
DistributionGaussian gauss(5.0, 1.25);
ParameterPattern pattern_radius;
pattern_radius.add("Particle").add("Cylinder").add("Radius");
ParameterDistribution par_distr(pattern_radius.toStdString(), gauss, 30, 3.0);
ParameterPattern pattern_height;
pattern_height.add("Particle").add("Cylinder").add("Height");
par_distr.linkParameter(pattern_height.toStdString());
ParticleDistribution particle_collection(particle_prototype, par_distr);
particle_layout.addParticle(particle_collection);
particle_layout.setInterference(interparticle);
vacuum_layer.addLayout(particle_layout);
auto* sample = new MultiLayer;
sample->addLayer(vacuum_layer);
return sample;
*/
}
|