File: SlicedCylindersBuilder.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (121 lines) | stat: -rw-r--r-- 4,351 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Sample/StandardSample/SlicedCylindersBuilder.cpp
//! @brief     Implements classes for testing slicing machinery.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Sample/StandardSample/SlicedCylindersBuilder.h"
#include "Base/Const/Units.h"
#include "Sample/Aggregate/ParticleLayout.h"
#include "Sample/HardParticle/Cylinder.h"
#include "Sample/Material/MaterialFactoryFuncs.h"
#include "Sample/Multilayer/Layer.h"
#include "Sample/Multilayer/Sample.h"
#include "Sample/Particle/Particle.h"
#include <numbers>

using std::numbers::pi;

namespace {

const double height(5);
const double radius(5);
const double wavelength(0.154); // nm
const int n_slices(3);

//! Returns SLD input (in inverse square Angstroms) for MaterialBySLD from _delta_ and _beta_,
//! i.e. the input for RefractiveMaterial.
complex_t getSLDFromN(double _wavelength, double delta, double beta)
{
    complex_t result{2 * delta - delta * delta + beta * beta, 2 * beta - 2 * delta * beta};
    return result * pi / (_wavelength * _wavelength) * (Units::angstrom * Units::angstrom);
}

complex_t averageSLD(complex_t sld_p, complex_t sld_l, double eff_vol)
{
    return sld_l + eff_vol * (sld_p - sld_l);
}

} // namespace

Sample* ExemplarySamples::createSlicedCylinders()
{
    Material vacuum_material = RefractiveMaterial("Vacuum", 0.0, 0.0);
    Material substrate_material = RefractiveMaterial("Substrate", 6e-6, 2e-8);
    Material particle_material = RefractiveMaterial("Particle", 6e-4, 2e-8);

    Layer vacuum_layer(vacuum_material);
    Layer substrate_layer(substrate_material);

    Cylinder ff_cylinder(radius, height);

    Particle particle(particle_material, ff_cylinder);
    ParticleLayout particle_layout(particle);

    vacuum_layer.addLayout(particle_layout);
    vacuum_layer.setNumberOfSlices(n_slices);

    auto* sample = new Sample;
    sample->addLayer(vacuum_layer);
    sample->addLayer(substrate_layer);
    return sample;
}

Sample* ExemplarySamples::createSLDSlicedCylinders()
{
    Material vacuum_material = MaterialBySLD("Vacuum", 0.0, 0.0);
    complex_t sub_sld = getSLDFromN(wavelength, 6e-6, 2e-8);
    Material substrate_material = MaterialBySLD("Substrate", sub_sld.real(), sub_sld.imag());
    complex_t par_sld = getSLDFromN(wavelength, 6e-4, 2e-8);
    Material particle_material = MaterialBySLD("Particle", par_sld.real(), par_sld.imag());

    Layer vacuum_layer(vacuum_material);
    Layer substrate_layer(substrate_material);

    Cylinder ff_cylinder(radius, height);

    Particle particle(particle_material, ff_cylinder);
    ParticleLayout particle_layout(particle);

    vacuum_layer.addLayout(particle_layout);
    vacuum_layer.setNumberOfSlices(n_slices);

    auto* sample = new Sample;
    sample->addLayer(vacuum_layer);
    sample->addLayer(substrate_layer);
    return sample;
}

Sample* ExemplarySamples::createAveragedSlicedCylinders()
{
    const auto par_surf_density = ParticleLayout().totalParticleSurfaceDensity();

    complex_t vacuum_sld{0.0, 0.0};
    Material vacuum_material = MaterialBySLD("Vacuum", vacuum_sld.real(), vacuum_sld.imag());
    complex_t sub_sld = getSLDFromN(wavelength, 6e-6, 2e-8);
    Material substrate_material = MaterialBySLD("Substrate", sub_sld.real(), sub_sld.imag());

    double eff_vol = par_surf_density * pi * radius * radius;
    complex_t par_sld = getSLDFromN(wavelength, 6e-4, 2e-8);
    complex_t avr_sld = averageSLD(par_sld, vacuum_sld, eff_vol);
    Material avr_material = MaterialBySLD("Avr", avr_sld.real(), avr_sld.imag());

    Layer vacuum_layer(vacuum_material);
    Layer avr_layer(avr_material, height / n_slices);
    Layer substrate_layer(substrate_material);

    auto* sample = new Sample;
    sample->addLayer(vacuum_layer);
    for (size_t i = 0; i < n_slices; ++i)
        sample->addLayer(avr_layer);
    sample->addLayer(substrate_layer);
    return sample;
}