1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sim/Export/PyFmt2.cpp
//! @brief Implements functions from namespace pyfmt2.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sim/Export/PyFmt2.h"
#include "Base/Axis/MakeScale.h"
#include "Base/Axis/Scale.h"
#include "Base/Const/Units.h"
#include "Base/Py/PyFmt.h"
#include "Base/Util/Assert.h"
#include "Base/Util/StringUtil.h"
#include "Device/Mask/Ellipse.h"
#include "Device/Mask/InfinitePlane.h"
#include "Device/Mask/Line.h"
#include "Device/Mask/Polygon.h"
#include "Device/Mask/Rectangle.h"
#include "Param/Distrib/Distributions.h"
#include "Param/Distrib/ParameterDistribution.h"
#include <iomanip>
//! Returns fixed Python code snippet that defines the function "simulate".
std::string Py::Fmt2::representShape2D(const std::string& indent, const IShape2D* ishape,
bool mask_value,
std::function<std::string(double)> printValueFunc)
{
std::ostringstream result;
result << std::setprecision(12);
if (const auto* shape = dynamic_cast<const Polygon*>(ishape)) {
std::vector<double> xpos, ypos;
shape->getPoints(xpos, ypos);
result << indent << "points = [";
for (size_t i = 0; i < xpos.size(); ++i) {
result << "[" << printValueFunc(xpos[i]) << ", " << printValueFunc(ypos[i]) << "]";
if (i != xpos.size() - 1)
result << ", ";
}
result << "]\n";
result << indent << "detector.addMask("
<< "ba.Polygon(points), " << Py::Fmt::printBool(mask_value) << ")\n";
} else if (dynamic_cast<const InfinitePlane*>(ishape))
result << indent << "detector.maskAll()\n";
else if (const auto* shape = dynamic_cast<const Ellipse*>(ishape)) {
result << indent << "detector.addMask(";
result << "ba.Ellipse(" << printValueFunc(shape->getCenterX()) << ", "
<< printValueFunc(shape->getCenterY()) << ", " << printValueFunc(shape->radiusX())
<< ", " << printValueFunc(shape->radiusY());
if (shape->getTheta() != 0.0)
result << ", " << Py::Fmt::printDegrees(shape->getTheta());
result << "), " << Py::Fmt::printBool(mask_value) << ")\n";
}
else if (const auto* shape = dynamic_cast<const Rectangle*>(ishape)) {
result << indent << "detector.addMask(";
result << "ba.Rectangle(" << printValueFunc(shape->getXlow()) << ", "
<< printValueFunc(shape->getYlow()) << ", " << printValueFunc(shape->getXup())
<< ", " << printValueFunc(shape->getYup()) << "), " << Py::Fmt::printBool(mask_value)
<< ")\n";
}
else if (const auto* shape = dynamic_cast<const VerticalLine*>(ishape)) {
result << indent << "detector.addMask(";
result << "ba.VerticalLine(" << printValueFunc(shape->getXpos()) << "), "
<< Py::Fmt::printBool(mask_value) << ")\n";
}
else if (const auto* shape = dynamic_cast<const HorizontalLine*>(ishape)) {
result << indent << "detector.addMask(";
result << "ba.HorizontalLine(" << printValueFunc(shape->getYpos()) << "), "
<< Py::Fmt::printBool(mask_value) << ")\n";
} else
ASSERT_NEVER;
return result.str();
}
//! Prints an axis.
std::string Py::Fmt2::printAxis(const Scale* a, const std::string& unit)
{
std::ostringstream result;
if (a->isEquiDivision())
result << "ba.EquiDivision(" << Py::Fmt::printString(a->axisLabel()) << ", " << a->size()
<< ", " << Py::Fmt::printValue(a->min(), unit) << ", "
<< Py::Fmt::printValue(a->max(), unit) << ")";
else if (a->isEquiScan())
result << "ba.EquiScan(" << Py::Fmt::printString(a->axisLabel()) << ", " << a->size()
<< ", " << Py::Fmt::printValue(a->min(), unit) << ", "
<< Py::Fmt::printValue(a->max(), unit) << ")";
else if (a->isScan()) {
result << "ba.ListScan(" << Py::Fmt::printString(a->axisLabel()) << ", [";
const std::vector<double>& points = a->binCenters();
for (auto iter = points.begin(); iter != points.end() - 1; ++iter)
result << Py::Fmt::printValue(*iter, unit) << ",";
result << Py::Fmt::printValue(points.back(), unit) << "])\n";
} else
ASSERT_NEVER; // not implemented for current axis type
return result.str();
}
std::string Py::Fmt2::printParameterDistribution(const ParameterDistribution& par_distr,
const std::string& distVarName)
{
std::ostringstream result;
result << "ba.ParameterDistribution(ba." << par_distr.whichParameterAsPyEnum() << ", "
<< distVarName << ")";
return result.str();
}
std::string Py::Fmt2::printDistribution(const IDistribution1D& distr)
{
std::ostringstream result;
result << std::setprecision(16); // TODO revert to precision(12) after improving DistrGate
result << "ba." << distr.className() << "(";
for (size_t i = 0;;) {
result << distr.parVal(i);
if (++i == distr.nPars())
break;
result << ", ";
}
result << ", " << distr.nSamples();
if (distr.relSamplingWidth() != 1.)
result << ", " << distr.relSamplingWidth();
result << ")\n";
return result.str();
}
|