File: FitObjective.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (344 lines) | stat: -rw-r--r-- 11,600 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Sim/Fitting/FitObjective.cpp
//! @brief     Implements class FitObjective.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Sim/Fitting/FitObjective.h"
#include "Base/Util/Assert.h"
#include "Device/Data/DataUtil.h"
#include "Device/Data/Datafield.h"
#include "Fit/Minimizer/MinimizerResult.h"
#include "Sim/Fitting/FitStatus.h"
#include "Sim/Fitting/ObjectiveMetric.h"
#include "Sim/Fitting/ObjectiveMetricUtil.h"
#include "Sim/Fitting/SimDataPair.h"
#include "Sim/Fitting/SimulationWrapper.h"
#include "Sim/Residual/ChiSquaredModule.h"
#include "Sim/Simulation/ISimulation.h"
#include <algorithm>
#include <iostream>
#include <stdexcept>

//  ************************************************************************************************
//  definition of auxiliary class hierarchy IMetricWrapper
//  ************************************************************************************************

class IMetricWrapper {
public:
    virtual ~IMetricWrapper() = default;
    virtual double compute(const std::vector<SimDataPair>& sim_data_pairs, size_t n_pars) const = 0;
};

//! Metric wrapper for back-compaptibility with old scripts
class ChiModuleWrapper : public IMetricWrapper {
public:
    explicit ChiModuleWrapper(std::unique_ptr<IChiSquaredModule> module);
    double compute(const std::vector<SimDataPair>& sim_data_pairs, size_t n_pars) const override;

private:
    std::unique_ptr<IChiSquaredModule> m_module;
};

class ObjectiveMetricWrapper : public IMetricWrapper {
public:
    explicit ObjectiveMetricWrapper(std::unique_ptr<ObjectiveMetric> module);
    double compute(const std::vector<SimDataPair>& sim_data_pairs, size_t n_pars) const override;

private:
    std::unique_ptr<ObjectiveMetric> m_module;
};

//  ************************************************************************************************
//  implementation of auxiliary class hierarchy IMetricWrapper
//  ************************************************************************************************

ChiModuleWrapper::ChiModuleWrapper(std::unique_ptr<IChiSquaredModule> module)
    : m_module(std::move(module))
{
    ASSERT(m_module);
}

double ChiModuleWrapper::compute(const std::vector<SimDataPair>& sim_data_pairs,
                                 size_t n_pars) const
{
    size_t n_points = 0;
    double result = 0;
    for (const auto& obj : sim_data_pairs) {
        const auto sim_array = obj.simulation_array();
        const auto exp_array = obj.experimental_array();
        const size_t n_elements = sim_array.size();
        double contrib = 0;
        for (size_t i = 0; i < n_elements; ++i) {
            double value = m_module->residual(sim_array[i], exp_array[i]);
            contrib += std::pow(value, 2);
        }
        result += obj.weight() * contrib;
        n_points += n_elements;
    }

    int fnorm = static_cast<int>(n_points) - static_cast<int>(n_pars);
    if (fnorm <= 0)
        throw std::runtime_error("Error in ChiModuleWrapper: Normalization shall be positive");

    return result / fnorm;
}

ObjectiveMetricWrapper::ObjectiveMetricWrapper(std::unique_ptr<ObjectiveMetric> module)
    : m_module(std::move(module))
{
    ASSERT(m_module);
}

double ObjectiveMetricWrapper::compute(const std::vector<SimDataPair>& sim_data_pairs, size_t) const
{
    // deciding whether to use uncertainties in metrics computation.
    bool use_uncertainties = true;
    for (const auto& obj : sim_data_pairs)
        use_uncertainties = use_uncertainties && obj.containsUncertainties();

    double result = 0.0;
    for (const auto& obj : sim_data_pairs)
        result += obj.weight() * m_module->computeMetric(obj, use_uncertainties);
    return result;
}

//  ************************************************************************************************
//  implementation of class FitObjective
//  ************************************************************************************************

FitObjective::FitObjective()
    : m_metric_module(
          std::make_unique<ObjectiveMetricWrapper>(std::make_unique<PoissonLikeMetric>()))
    , m_fit_status(std::make_unique<FitStatus>(this))
{
}

FitObjective::~FitObjective() = default;

//! Constructs simulation/data pair for later fit.
//! @param builder: simulation builder capable of producing simulations
//! @param data: experimental data array
//! @param stdv: data uncertainties array
//! @param weight: weight of dataset in metric calculations

void FitObjective::addFitPair(const simulation_builder_t& sim_fn, const Datafield& expData,
                              const double weight)
{
    // add C++ simulation building function
    SimulationWrapper sim;
    sim.cSimulationFn = sim_fn;
    m_sim_data_pairs.emplace_back(sim, expData, weight);
}

void FitObjective::addFitPair(void* pSimulationCallable, PySimulate_t pSimulationCaller,
                              PyFree_t pFree, const Datafield& expData, const double weight)
{
    // add Python simulation building function
    SimulationWrapper sim;
    sim.pySimulationFn = pSimulationCallable;
    sim.pySimulate = pSimulationCaller;
    sim.pyFree = pFree;
    m_sim_data_pairs.emplace_back(sim, expData, weight);
}

double FitObjective::evaluate(const mumufit::Parameters& params)
{
    execSimulations(params);
    const double metric_value = m_metric_module->compute(m_sim_data_pairs, params.size());
    m_fit_status->update(params, metric_value);
    return metric_value;
}

std::vector<double> FitObjective::evaluate_residuals(const mumufit::Parameters& params)
{
    evaluate(params);

    std::vector<double> result = flatExpData(); // init result with experimental data values
    const std::vector<double> sim_values = flatSimData();
    std::transform(result.begin(), result.end(), sim_values.begin(), result.begin(),
                   [](double lhs, double rhs) { return lhs - rhs; });
    return result;
}

//! Returns simulation result in the form of Datafield.
Datafield FitObjective::simulationResult(size_t i_item) const
{
    return dataPair(i_item).simulationResult();
}

//! Returns experimental data in the form of Datafield.
Datafield FitObjective::experimentalData(size_t i_item) const
{
    return dataPair(i_item).experimentalData();
}

//! Returns relative difference between simulation and experimental data
//! in the form of Datafield, for use in plotting.
Datafield FitObjective::relativeDifference(size_t i_item) const
{
    return dataPair(i_item).relativeDifference();
}

//! Returns absolute value of difference between simulation and experimental data
//! in the form of Datafield, for use in plotting.
Datafield FitObjective::absoluteDifference(size_t i_item) const
{
    return dataPair(i_item).absoluteDifference();
}

//! Returns one-dimensional array representing merged experimental data.
//! The area outside of the region of interest is not included, masked data is nullified.
std::vector<double> FitObjective::flatExpData() const
{
    return composeArray(&SimDataPair::experimental_array);
}

//! Returns one-dimensional array representing merged simulated intensities data.
//! The area outside of the region of interest is not included, masked data is nullified.
std::vector<double> FitObjective::flatSimData() const
{
    return composeArray(&SimDataPair::simulation_array);
}

const SimDataPair& FitObjective::dataPair(size_t i_item) const
{
    return m_sim_data_pairs.at(i_item);
}

void FitObjective::initPrint(int every_nth)
{
    m_fit_status->initPrint(every_nth);
}

void FitObjective::initPlot(int every_nth, fit_observer_t&& observer)
{
    m_fit_status->addObserver(every_nth, std::move(observer));
}

void FitObjective::initPlot(int every_nth, void* pCallable, PyCaller_t pCall)
{
    fit_observer_t observer = [pCallable, pCall](const FitObjective& objective) {
        pCall(pCallable, objective);
    };
    m_fit_status->addObserver(every_nth, std::move(observer));
}

bool FitObjective::isCompleted() const
{
    return m_fit_status->isCompleted();
}

IterationInfo FitObjective::iterationInfo() const
{
    return m_fit_status->iterationInfo();
}

mumufit::MinimizerResult FitObjective::minimizerResult() const
{
    return m_fit_status->minimizerResult();
}

void FitObjective::finalize(const mumufit::MinimizerResult& result)
{
    m_fit_status->finalize(result);
}

size_t FitObjective::nPairs() const
{
    return m_sim_data_pairs.size();
}

void FitObjective::interruptFitting()
{
    m_fit_status->setInterrupted();
}

bool FitObjective::isInterrupted() const
{
    return m_fit_status->isInterrupted();
}

bool FitObjective::isFirstIteration() const
{
    return iterationInfo().iterationCount() == 1;
}

void FitObjective::execSimulations(const mumufit::Parameters& params)
{
    if (m_fit_status->isInterrupted())
        throw std::runtime_error("Fitting was interrupted by the user.");

    if (m_sim_data_pairs.empty())
        throw std::runtime_error("Cannot start fit as no simulation/data pairs are defined.");

    for (auto& obj : m_sim_data_pairs)
        obj.execSimulation(params);
}

void FitObjective::setChiSquaredModule(const IChiSquaredModule& module)
{
    std::cout << "Warning in FitObjective::setChiSquaredModule: setChiSquaredModule is deprecated "
                 "and will be removed in future versions. Please use "
                 "FitObjective::setObjectiveMetric instead."
              << std::endl;

    std::unique_ptr<IChiSquaredModule> chi_module(module.clone());
    m_metric_module = std::make_unique<ChiModuleWrapper>(std::move(chi_module));
}

void FitObjective::setObjectiveMetric(std::unique_ptr<ObjectiveMetric> metric)
{
    m_metric_module = std::make_unique<ObjectiveMetricWrapper>(std::move(metric));
}

void FitObjective::setObjectiveMetric(const std::string& metric)
{
    m_metric_module = std::make_unique<ObjectiveMetricWrapper>(
        ObjectiveMetricUtil::createMetric(metric, ObjectiveMetricUtil::defaultNormName()));
}

void FitObjective::setObjectiveMetric(const std::string& metric, const std::string& norm)
{
    m_metric_module =
        std::make_unique<ObjectiveMetricWrapper>(ObjectiveMetricUtil::createMetric(metric, norm));
}

//! Returns true if the specified DataPair element contains uncertainties
bool FitObjective::containsUncertainties(size_t i_item) const
{
    return dataPair(i_item).containsUncertainties();
}

//! Returns true if all the data pairs in FitObjective instance contain uncertainties
bool FitObjective::allPairsHaveUncertainties() const
{
    bool result = true;
    for (size_t i = 0; i < m_sim_data_pairs.size(); ++i)
        result = result && dataPair(i).containsUncertainties();
    return result;
}

std::vector<double> FitObjective::composeArray(DataPairAccessor getter) const
{
    const size_t n_pairs = m_sim_data_pairs.size();
    if (n_pairs == 0)
        return {};
    if (n_pairs == 1)
        return (m_sim_data_pairs[0].*getter)();

    std::vector<double> result;
    for (const auto& pair : m_sim_data_pairs) {
        std::vector<double> array = (pair.*getter)();
        std::move(array.begin(), array.end(), std::back_inserter(result));
    }
    return result;
}