1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sim/Fitting/FitObjective.cpp
//! @brief Implements class FitObjective.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sim/Fitting/FitObjective.h"
#include "Base/Util/Assert.h"
#include "Device/Data/DataUtil.h"
#include "Device/Data/Datafield.h"
#include "Fit/Minimizer/MinimizerResult.h"
#include "Sim/Fitting/FitStatus.h"
#include "Sim/Fitting/ObjectiveMetric.h"
#include "Sim/Fitting/ObjectiveMetricUtil.h"
#include "Sim/Fitting/SimDataPair.h"
#include "Sim/Fitting/SimulationWrapper.h"
#include "Sim/Residual/ChiSquaredModule.h"
#include "Sim/Simulation/ISimulation.h"
#include <algorithm>
#include <iostream>
#include <stdexcept>
// ************************************************************************************************
// definition of auxiliary class hierarchy IMetricWrapper
// ************************************************************************************************
class IMetricWrapper {
public:
virtual ~IMetricWrapper() = default;
virtual double compute(const std::vector<SimDataPair>& sim_data_pairs, size_t n_pars) const = 0;
};
//! Metric wrapper for back-compaptibility with old scripts
class ChiModuleWrapper : public IMetricWrapper {
public:
explicit ChiModuleWrapper(std::unique_ptr<IChiSquaredModule> module);
double compute(const std::vector<SimDataPair>& sim_data_pairs, size_t n_pars) const override;
private:
std::unique_ptr<IChiSquaredModule> m_module;
};
class ObjectiveMetricWrapper : public IMetricWrapper {
public:
explicit ObjectiveMetricWrapper(std::unique_ptr<ObjectiveMetric> module);
double compute(const std::vector<SimDataPair>& sim_data_pairs, size_t n_pars) const override;
private:
std::unique_ptr<ObjectiveMetric> m_module;
};
// ************************************************************************************************
// implementation of auxiliary class hierarchy IMetricWrapper
// ************************************************************************************************
ChiModuleWrapper::ChiModuleWrapper(std::unique_ptr<IChiSquaredModule> module)
: m_module(std::move(module))
{
ASSERT(m_module);
}
double ChiModuleWrapper::compute(const std::vector<SimDataPair>& sim_data_pairs,
size_t n_pars) const
{
size_t n_points = 0;
double result = 0;
for (const auto& obj : sim_data_pairs) {
const auto sim_array = obj.simulation_array();
const auto exp_array = obj.experimental_array();
const size_t n_elements = sim_array.size();
double contrib = 0;
for (size_t i = 0; i < n_elements; ++i) {
double value = m_module->residual(sim_array[i], exp_array[i]);
contrib += std::pow(value, 2);
}
result += obj.weight() * contrib;
n_points += n_elements;
}
int fnorm = static_cast<int>(n_points) - static_cast<int>(n_pars);
if (fnorm <= 0)
throw std::runtime_error("Error in ChiModuleWrapper: Normalization shall be positive");
return result / fnorm;
}
ObjectiveMetricWrapper::ObjectiveMetricWrapper(std::unique_ptr<ObjectiveMetric> module)
: m_module(std::move(module))
{
ASSERT(m_module);
}
double ObjectiveMetricWrapper::compute(const std::vector<SimDataPair>& sim_data_pairs, size_t) const
{
// deciding whether to use uncertainties in metrics computation.
bool use_uncertainties = true;
for (const auto& obj : sim_data_pairs)
use_uncertainties = use_uncertainties && obj.containsUncertainties();
double result = 0.0;
for (const auto& obj : sim_data_pairs)
result += obj.weight() * m_module->computeMetric(obj, use_uncertainties);
return result;
}
// ************************************************************************************************
// implementation of class FitObjective
// ************************************************************************************************
FitObjective::FitObjective()
: m_metric_module(
std::make_unique<ObjectiveMetricWrapper>(std::make_unique<PoissonLikeMetric>()))
, m_fit_status(std::make_unique<FitStatus>(this))
{
}
FitObjective::~FitObjective() = default;
//! Constructs simulation/data pair for later fit.
//! @param builder: simulation builder capable of producing simulations
//! @param data: experimental data array
//! @param stdv: data uncertainties array
//! @param weight: weight of dataset in metric calculations
void FitObjective::addFitPair(const simulation_builder_t& sim_fn, const Datafield& expData,
const double weight)
{
// add C++ simulation building function
SimulationWrapper sim;
sim.cSimulationFn = sim_fn;
m_sim_data_pairs.emplace_back(sim, expData, weight);
}
void FitObjective::addFitPair(void* pSimulationCallable, PySimulate_t pSimulationCaller,
PyFree_t pFree, const Datafield& expData, const double weight)
{
// add Python simulation building function
SimulationWrapper sim;
sim.pySimulationFn = pSimulationCallable;
sim.pySimulate = pSimulationCaller;
sim.pyFree = pFree;
m_sim_data_pairs.emplace_back(sim, expData, weight);
}
double FitObjective::evaluate(const mumufit::Parameters& params)
{
execSimulations(params);
const double metric_value = m_metric_module->compute(m_sim_data_pairs, params.size());
m_fit_status->update(params, metric_value);
return metric_value;
}
std::vector<double> FitObjective::evaluate_residuals(const mumufit::Parameters& params)
{
evaluate(params);
std::vector<double> result = flatExpData(); // init result with experimental data values
const std::vector<double> sim_values = flatSimData();
std::transform(result.begin(), result.end(), sim_values.begin(), result.begin(),
[](double lhs, double rhs) { return lhs - rhs; });
return result;
}
//! Returns simulation result in the form of Datafield.
Datafield FitObjective::simulationResult(size_t i_item) const
{
return dataPair(i_item).simulationResult();
}
//! Returns experimental data in the form of Datafield.
Datafield FitObjective::experimentalData(size_t i_item) const
{
return dataPair(i_item).experimentalData();
}
//! Returns relative difference between simulation and experimental data
//! in the form of Datafield, for use in plotting.
Datafield FitObjective::relativeDifference(size_t i_item) const
{
return dataPair(i_item).relativeDifference();
}
//! Returns absolute value of difference between simulation and experimental data
//! in the form of Datafield, for use in plotting.
Datafield FitObjective::absoluteDifference(size_t i_item) const
{
return dataPair(i_item).absoluteDifference();
}
//! Returns one-dimensional array representing merged experimental data.
//! The area outside of the region of interest is not included, masked data is nullified.
std::vector<double> FitObjective::flatExpData() const
{
return composeArray(&SimDataPair::experimental_array);
}
//! Returns one-dimensional array representing merged simulated intensities data.
//! The area outside of the region of interest is not included, masked data is nullified.
std::vector<double> FitObjective::flatSimData() const
{
return composeArray(&SimDataPair::simulation_array);
}
const SimDataPair& FitObjective::dataPair(size_t i_item) const
{
return m_sim_data_pairs.at(i_item);
}
void FitObjective::initPrint(int every_nth)
{
m_fit_status->initPrint(every_nth);
}
void FitObjective::initPlot(int every_nth, fit_observer_t&& observer)
{
m_fit_status->addObserver(every_nth, std::move(observer));
}
void FitObjective::initPlot(int every_nth, void* pCallable, PyCaller_t pCall)
{
fit_observer_t observer = [pCallable, pCall](const FitObjective& objective) {
pCall(pCallable, objective);
};
m_fit_status->addObserver(every_nth, std::move(observer));
}
bool FitObjective::isCompleted() const
{
return m_fit_status->isCompleted();
}
IterationInfo FitObjective::iterationInfo() const
{
return m_fit_status->iterationInfo();
}
mumufit::MinimizerResult FitObjective::minimizerResult() const
{
return m_fit_status->minimizerResult();
}
void FitObjective::finalize(const mumufit::MinimizerResult& result)
{
m_fit_status->finalize(result);
}
size_t FitObjective::nPairs() const
{
return m_sim_data_pairs.size();
}
void FitObjective::interruptFitting()
{
m_fit_status->setInterrupted();
}
bool FitObjective::isInterrupted() const
{
return m_fit_status->isInterrupted();
}
bool FitObjective::isFirstIteration() const
{
return iterationInfo().iterationCount() == 1;
}
void FitObjective::execSimulations(const mumufit::Parameters& params)
{
if (m_fit_status->isInterrupted())
throw std::runtime_error("Fitting was interrupted by the user.");
if (m_sim_data_pairs.empty())
throw std::runtime_error("Cannot start fit as no simulation/data pairs are defined.");
for (auto& obj : m_sim_data_pairs)
obj.execSimulation(params);
}
void FitObjective::setChiSquaredModule(const IChiSquaredModule& module)
{
std::cout << "Warning in FitObjective::setChiSquaredModule: setChiSquaredModule is deprecated "
"and will be removed in future versions. Please use "
"FitObjective::setObjectiveMetric instead."
<< std::endl;
std::unique_ptr<IChiSquaredModule> chi_module(module.clone());
m_metric_module = std::make_unique<ChiModuleWrapper>(std::move(chi_module));
}
void FitObjective::setObjectiveMetric(std::unique_ptr<ObjectiveMetric> metric)
{
m_metric_module = std::make_unique<ObjectiveMetricWrapper>(std::move(metric));
}
void FitObjective::setObjectiveMetric(const std::string& metric)
{
m_metric_module = std::make_unique<ObjectiveMetricWrapper>(
ObjectiveMetricUtil::createMetric(metric, ObjectiveMetricUtil::defaultNormName()));
}
void FitObjective::setObjectiveMetric(const std::string& metric, const std::string& norm)
{
m_metric_module =
std::make_unique<ObjectiveMetricWrapper>(ObjectiveMetricUtil::createMetric(metric, norm));
}
//! Returns true if the specified DataPair element contains uncertainties
bool FitObjective::containsUncertainties(size_t i_item) const
{
return dataPair(i_item).containsUncertainties();
}
//! Returns true if all the data pairs in FitObjective instance contain uncertainties
bool FitObjective::allPairsHaveUncertainties() const
{
bool result = true;
for (size_t i = 0; i < m_sim_data_pairs.size(); ++i)
result = result && dataPair(i).containsUncertainties();
return result;
}
std::vector<double> FitObjective::composeArray(DataPairAccessor getter) const
{
const size_t n_pairs = m_sim_data_pairs.size();
if (n_pairs == 0)
return {};
if (n_pairs == 1)
return (m_sim_data_pairs[0].*getter)();
std::vector<double> result;
for (const auto& pair : m_sim_data_pairs) {
std::vector<double> array = (pair.*getter)();
std::move(array.begin(), array.end(), std::back_inserter(result));
}
return result;
}
|