1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sim/Fitting/ObjectiveMetric.cpp
//! @brief Implements class ObjectiveMetrices.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sim/Fitting/ObjectiveMetric.h"
#include "Base/Util/Assert.h"
#include "Device/Data/Datafield.h"
#include "Sim/Fitting/ObjectiveMetricUtil.h"
#include "Sim/Fitting/SimDataPair.h"
#include <cmath>
#include <limits>
#include <stdexcept>
namespace {
const double double_max = std::numeric_limits<double>::max();
const double double_min = std::numeric_limits<double>::min();
const double ln10 = std::log(10.0);
template <typename T> T* copyMetric(const T& metric)
{
auto* result = new T;
result->setNorm(metric.norm());
return result;
}
void checkIntegrity(const std::vector<double>& sim_data, const std::vector<double>& exp_data)
{
const size_t sim_size = sim_data.size();
if (sim_size != exp_data.size())
throw std::runtime_error("Error in ObjectiveMetric: input arrays have different sizes");
for (size_t i = 0; i < sim_size; ++i)
if (sim_data[i] < 0.0)
throw std::runtime_error(
"Error in ObjectiveMetric: simulation data array contains negative values");
}
void checkIntegrity(const std::vector<double>& sim_data, const std::vector<double>& exp_data,
const std::vector<double>& exp_stdv)
{
if (sim_data.size() != exp_stdv.size())
throw std::runtime_error("Error in ObjectiveMetric: input arrays have different sizes");
checkIntegrity(sim_data, exp_data);
}
} // namespace
ObjectiveMetric::ObjectiveMetric(const std::function<double(double)>& norm)
: m_norm(norm)
{
}
double ObjectiveMetric::computeMetric(const SimDataPair& data_pair, bool use_weights) const
{
if (use_weights && !data_pair.containsUncertainties())
throw std::runtime_error("Error in ObjectiveMetric::compute: the metric is weighted, but "
"the simulation-data pair does not contain uncertainties");
if (use_weights)
return computeFromArrays(data_pair.simulation_array(), data_pair.experimental_array(),
data_pair.uncertainties_array());
return computeFromArrays(data_pair.simulation_array(), data_pair.experimental_array());
}
void ObjectiveMetric::setNorm(std::function<double(double)> norm)
{
m_norm = std::move(norm);
}
// ----------------------- Chi2 metric ---------------------------
Chi2Metric::Chi2Metric()
: ObjectiveMetric(ObjectiveMetricUtil::l2Norm())
{
}
Chi2Metric* Chi2Metric::clone() const
{
return copyMetric(*this);
}
double Chi2Metric::computeFromArrays(std::vector<double> sim_data, std::vector<double> exp_data,
std::vector<double> exp_stdv) const
{
checkIntegrity(sim_data, exp_data, exp_stdv);
double result = 0.0;
auto norm_fun = norm();
for (size_t i = 0, sim_size = sim_data.size(); i < sim_size; ++i)
if (exp_data[i] >= 0.0 && exp_stdv[i] > 0.0)
result += norm_fun((exp_data[i] - sim_data[i]) / exp_stdv[i]);
return std::isfinite(result) ? result : double_max;
}
double Chi2Metric::computeFromArrays(std::vector<double> sim_data,
std::vector<double> exp_data) const
{
checkIntegrity(sim_data, exp_data);
auto norm_fun = norm();
double result = 0.0;
for (size_t i = 0, sim_size = sim_data.size(); i < sim_size; ++i)
if (exp_data[i] >= 0.0)
result += norm_fun(exp_data[i] - sim_data[i]);
return std::isfinite(result) ? result : double_max;
}
// ----------------------- Poisson-like metric ---------------------------
PoissonLikeMetric::PoissonLikeMetric() = default;
PoissonLikeMetric* PoissonLikeMetric::clone() const
{
return copyMetric(*this);
}
double PoissonLikeMetric::computeFromArrays(std::vector<double> sim_data,
std::vector<double> exp_data) const
{
checkIntegrity(sim_data, exp_data);
double result = 0.0;
auto norm_fun = norm();
for (size_t i = 0, sim_size = sim_data.size(); i < sim_size; ++i) {
if (exp_data[i] < 0.0)
continue;
const double variance = std::max(1.0, sim_data[i]);
const double value = (sim_data[i] - exp_data[i]) / std::sqrt(variance);
result += norm_fun(value);
}
return std::isfinite(result) ? result : double_max;
}
// ----------------------- Log metric ---------------------------
LogMetric::LogMetric()
: ObjectiveMetric(ObjectiveMetricUtil::l2Norm())
{
}
LogMetric* LogMetric::clone() const
{
return copyMetric(*this);
}
double LogMetric::computeFromArrays(std::vector<double> sim_data, std::vector<double> exp_data,
std::vector<double> exp_stdv) const
{
checkIntegrity(sim_data, exp_data, exp_stdv);
double result = 0.0;
auto norm_fun = norm();
for (size_t i = 0, sim_size = sim_data.size(); i < sim_size; ++i) {
if (exp_data[i] < 0.0 || exp_stdv[i] <= 0.0)
continue;
const double sim_val = std::max(double_min, sim_data[i]);
const double exp_val = std::max(double_min, exp_data[i]);
double value = std::log10(sim_val) - std::log10(exp_val);
value *= exp_val * ln10 / exp_stdv[i];
result += norm_fun(value);
}
return std::isfinite(result) ? result : double_max;
}
double LogMetric::computeFromArrays(std::vector<double> sim_data,
std::vector<double> exp_data) const
{
checkIntegrity(sim_data, exp_data);
double result = 0.0;
auto norm_fun = norm();
for (size_t i = 0, sim_size = sim_data.size(); i < sim_size; ++i) {
if (exp_data[i] < 0.0)
continue;
const double sim_val = std::max(double_min, sim_data[i]);
const double exp_val = std::max(double_min, exp_data[i]);
result += norm_fun(std::log10(sim_val) - std::log10(exp_val));
}
return std::isfinite(result) ? result : double_max;
}
// ----------------------- Relative difference ---------------------------
meanRelativeDifferenceMetric::meanRelativeDifferenceMetric() = default;
meanRelativeDifferenceMetric* meanRelativeDifferenceMetric::clone() const
{
return copyMetric(*this);
}
double meanRelativeDifferenceMetric::computeFromArrays(std::vector<double> sim_data,
std::vector<double> exp_data) const
{
checkIntegrity(sim_data, exp_data);
double result = 0.0;
auto norm_fun = norm();
for (size_t i = 0, sim_size = sim_data.size(); i < sim_size; ++i) {
if (exp_data[i] < 0.0)
continue;
const double sim_val = std::max(double_min, sim_data[i]);
const double exp_val = std::max(double_min, exp_data[i]);
result += norm_fun((exp_val - sim_val) / (exp_val + sim_val));
}
return std::isfinite(result) ? result : double_max;
}
// ----------------------- RQ4 metric ---------------------------
RQ4Metric::RQ4Metric() = default;
RQ4Metric* RQ4Metric::clone() const
{
return copyMetric(*this);
}
double RQ4Metric::computeMetric(const SimDataPair& data_pair, bool use_weights) const
{
if (use_weights)
return Chi2Metric::computeMetric(data_pair, use_weights);
// fetching data in RQ4 form
// TODO weight data points correctly
// https://jugit.fz-juelich.de/mlz/bornagain/-/issues/568
throw std::runtime_error("\"rq4\" metric is temporary disabled.\n"
"Please choose another one.");
const std::vector<double> sim_vec = data_pair.simulationResult().flatVector();
const std::vector<double> exp_vec = data_pair.experimentalData().flatVector();
return computeFromArrays(sim_vec, exp_vec);
}
|