File: SimDataPair.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (191 lines) | stat: -rw-r--r-- 6,082 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Sim/Fitting/SimDataPair.cpp
//! @brief     Defines class SimDataPair.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Sim/Fitting/SimDataPair.h"
#include "Base/Axis/Frame.h"
#include "Base/Axis/Scale.h"
#include "Base/Math/Numeric.h"
#include "Base/Util/Assert.h"
#include "Device/Data/Datafield.h"
#include "Device/Detector/IDetector.h"
#include "Sim/Simulation/ScatteringSimulation.h"
#include <utility>

namespace {

bool haveSameSizes(const IDetector& detector, const Datafield& data)
{
    if (data.rank() != 2)
        return false;

    for (size_t i = 0; i < 2; ++i)
        if (data.axis(i).size() != detector.axis(i).size())
            return false;

    return true;
}

//! Convert user data to Datafield object for later drawing in various axes units.
//! User data will be cropped to the ROI defined in the simulation, amplitudes in areas
//! corresponding to the masked areas of the detector will be set to zero.

Datafield repositionData(const ScatteringSimulation& simulation, const Datafield& data)
{
    auto frame = std::make_unique<Frame>(simulation.detector().clippedFrame());

    std::vector<double> values(frame->size(), 0.);
    std::vector<double> errors;
    if (data.hasErrorSigmas())
        errors = std::vector<double>(frame->size(), 0.);

    const IDetector& det = simulation.detector();
    std::vector<size_t> ai = det.activeIndices();
    if (frame->hasSameSizes(data.frame())) {
        for (unsigned long i : ai) {
            values[i] = data[i];
            if (data.hasErrorSigmas())
                errors[i] = data.errorSigmas()[i];
        }
    } else if (haveSameSizes(simulation.detector(), data)) {
        // experimental data has same shape as the detector, we have to copy the original
        // data to a smaller roi map
        for (unsigned long i : ai) {
            values[i] = data[det.roiToFullIndex(i)];
            if (data.hasErrorSigmas())
                errors[i] = data.errorSigmas()[det.roiToFullIndex(i)];
        }
    } else
        throw std::runtime_error(
            "FitObject::init_dataset: Detector and experimental data have different shape");

    return {*frame, values, errors};
}

} // namespace

//  ************************************************************************************************
//  class implementation
//  ************************************************************************************************

SimDataPair::SimDataPair(const SimulationWrapper& sim, const Datafield& raw_data,
                         const double weight)
    : m_simulation_builder(sim)
    , m_raw_data(raw_data.clone())
    , m_weight(weight)
{
    validate();
}

SimDataPair::SimDataPair(SimDataPair&& other) noexcept = default;

SimDataPair::~SimDataPair() = default;

void SimDataPair::execSimulation(const mumufit::Parameters& params)
{
    m_sim_data = std::make_unique<Datafield>(m_simulation_builder.simulate(params));

    ASSERT(!m_sim_data->empty());

    if (m_exp_data) {
        if (!m_exp_data->empty()) {
            // discard the simulation artifacts (if any)
            m_simulation_builder.discard();
            // TODO: why this early return?
            return;
        }
    }

    // TODO: why experimental data is replaced in this case?
    auto* const sim2d = dynamic_cast<ScatteringSimulation*>(m_simulation_builder.simulation.get());

    if (sim2d)
        m_exp_data = std::make_unique<Datafield>(repositionData(*sim2d, *m_raw_data));
    else
        m_exp_data = std::make_unique<Datafield>(*m_raw_data);
}

bool SimDataPair::containsUncertainties() const
{
    return m_raw_data->hasErrorSigmas();
}

Datafield SimDataPair::simulationResult() const
{
    ASSERT(m_sim_data);
    ASSERT(!m_sim_data->empty());
    return *m_sim_data;
}

Datafield SimDataPair::experimentalData() const
{
    ASSERT(m_exp_data);
    ASSERT(!m_exp_data->empty());
    return *m_exp_data;
}

std::vector<double> SimDataPair::simulation_array() const
{
    return simulationResult().flatVector();
}

std::vector<double> SimDataPair::experimental_array() const
{
    return experimentalData().flatVector();
}

std::vector<double> SimDataPair::uncertainties_array() const
{
    ASSERT(m_exp_data);
    return m_exp_data->errorSigmas();
}

//! Returns relative difference between simulation and experimental data.

Datafield SimDataPair::relativeDifference() const
{
    size_t N = m_sim_data->size();
    if (N == 0)
        throw std::runtime_error("Empty simulation data => won't compute relative difference");
    if (!m_exp_data || m_exp_data->size() != N)
        throw std::runtime_error("Different data shapes => won't compute relative difference");

    std::vector<double> data(N, 0.);
    for (size_t i = 0; i < N; ++i)
        data[i] = Numeric::relativeDifference((*m_sim_data)[i], (*m_exp_data)[i]);

    return {Datafield(m_sim_data->frame(), data)};
}

Datafield SimDataPair::absoluteDifference() const
{
    size_t N = m_sim_data->size();
    if (N == 0)
        throw std::runtime_error("Empty simulation data => won't compute absolute difference");
    if (!m_exp_data || m_exp_data->size() != N)
        throw std::runtime_error("Different data shapes => won't compute absolute difference");

    std::vector<double> data(N, 0.);
    for (size_t i = 0; i < N; ++i)
        data[i] = std::abs((*m_sim_data)[i] - (*m_exp_data)[i]);

    return {Datafield(m_sim_data->frame(), data)};
}

void SimDataPair::validate() const
{
    m_simulation_builder.check();

    if (!m_raw_data)
        throw std::runtime_error("Error in SimDataPair: passed experimental data array is empty");
}