1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sim/Scan/BeamScan.cpp
//! @brief Implements interface BeamScan.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sim/Scan/BeamScan.h"
#include "Base/Axis/Frame.h"
#include "Base/Axis/Scale.h"
#include "Base/Math/Numeric.h"
#include "Base/Spin/SpinMatrix.h"
#include "Base/Util/Assert.h"
#include "Device/Beam/Beam.h"
#include "Device/Pol/PolFilter.h"
#include "Param/Distrib/Distributions.h"
#include "Param/Distrib/ParameterSample.h"
#include "Resample/Slice/KzComputation.h"
BeamScan::BeamScan(const Scale& axis)
: m_axis(axis.clone())
{
}
BeamScan::~BeamScan() = default;
void BeamScan::copyBeamScan(BeamScan* dest) const
{
dest->m_beams = m_beams; // TODO cleanup: here we are overwriting what was set in the c'tor
if (m_pol_analyzer)
dest->setAnalyzer(m_pol_analyzer->BlochVector(), m_pol_analyzer->transmission());
}
std::vector<const INode*> BeamScan::nodeChildren() const
{
std::vector<const INode*> result;
if (m_pol_analyzer)
result << m_pol_analyzer.get();
return result;
}
void BeamScan::setAnalyzer(const R3& Bloch_vector, double mean_transmission)
{
m_pol_analyzer = std::make_unique<PolFilter>(Bloch_vector, mean_transmission);
}
size_t BeamScan::nScan() const
{
return m_axis->size();
}
double BeamScan::commonIntensity() const
{
if (!isCommonIntensity())
throw std::runtime_error("Intensity changes during scan. "
"Use 'intensityAt(i)' instead.");
return m_beams.front()->intensity();
}
void BeamScan::setIntensity(double intensity)
{
for (auto& b : m_beams)
b->setIntensity(intensity);
}
double BeamScan::intensityAt(size_t i) const
{
return m_beams[i]->intensity();
}
const R3& BeamScan::commonPolarization() const
{
if (!isCommonPolarization())
throw std::runtime_error("Polarization changes during scan. "
"Use 'polarizationAt(i)' instead.");
return m_beams.front()->polVector();
}
R3 BeamScan::polarizationAt(size_t i) const
{
return m_beams[i]->polVector();
}
void BeamScan::setPolarization(const R3& bloch_vector)
{
for (auto& b : m_beams)
b->setPolarization(bloch_vector);
}
SpinMatrix BeamScan::polarizerMatrixAt(size_t i) const
{
return m_beams[i]->polMatrix();
}
SpinMatrix BeamScan::analyzerMatrix() const
{
return m_pol_analyzer ? m_pol_analyzer->matrix() : SpinMatrix::One();
}
std::vector<complex_t> BeamScan::produceKz(const SliceStack& slices, const R3& k) const
{
return Compute::Kz::computeKzFromRefIndices(slices, k);
}
bool BeamScan::isCommonIntensity() const
{
const auto ref = m_beams.front()->intensity();
for (const auto& b : m_beams)
if (!Numeric::almostEqual(b->intensity(), ref, 1))
return false;
return true;
}
bool BeamScan::isCommonPolarization() const
{
const auto ref = m_beams.front()->polVector();
for (const auto& b : m_beams)
if (!Numeric::almostEqual(b->polVector(), ref, 1))
return false;
return true;
}
std::vector<ParameterSample> BeamScan::drawDistribution(IDistribution1D* distrib,
double point) const
{
if (!distrib)
return {{point, 1}};
distrib->setMean(point);
return distrib->distributionSamples();
}
|