1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Sim/Simulation/ScatteringSimulation.cpp
//! @brief Implements interface ISimulation.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Sim/Simulation/ScatteringSimulation.h"
#include "Base/Axis/Frame.h"
#include "Base/Axis/Pixel.h"
#include "Base/Axis/Scale.h"
#include "Base/Progress/ProgressHandler.h"
#include "Base/Util/Assert.h"
#include "Device/Beam/Beam.h"
#include "Device/Beam/IFootprint.h"
#include "Device/Data/Datafield.h"
#include "Device/Detector/IDetector.h"
#include "Param/Distrib/DistributionHandler.h"
#include "Resample/Element/DiffuseElement.h"
#include "Sample/Multilayer/Sample.h"
#include "Sim/Background/IBackground.h"
#include "Sim/Computation/DWBAComputation.h"
ScatteringSimulation::ScatteringSimulation(const Beam& beam, const Sample& sample,
const IDetector& detector)
: ISimulation(sample)
, m_beam(beam.clone())
, m_detector(detector.clone())
{
}
ScatteringSimulation::~ScatteringSimulation() = default;
void ScatteringSimulation::addParameterDistribution(
ParameterDistribution::WhichParameter whichParameter, const IDistribution1D& distribution)
{
ParameterDistribution par_distr(whichParameter, distribution);
distributionHandler().addDistribution(par_distr);
}
//... Overridden executors:
//! init callbacks for setting the parameter values
void ScatteringSimulation::initDistributionHandler()
{
for (const auto& distribution : distributionHandler().paramDistributions()) {
switch (distribution.whichParameter()) {
case ParameterDistribution::BeamAzimuthalAngle:
distributionHandler().defineCallbackForDistribution(
&distribution, [&](double d) { m_beam->setAzimuthalAngle(d); });
break;
case ParameterDistribution::BeamGrazingAngle:
distributionHandler().defineCallbackForDistribution(
&distribution, [&](double d) { m_beam->setGrazingAngle(d); });
break;
case ParameterDistribution::BeamWavelength:
distributionHandler().defineCallbackForDistribution(
&distribution, [&](double d) { m_beam->setWavelength(d); });
break;
default:
ASSERT_NEVER;
}
}
}
void ScatteringSimulation::prepareSimulation()
{
sample()->checkMaterials(beam().wavelength());
m_active_indices = m_detector->activeIndices();
m_pixels.reserve(m_active_indices.size());
for (size_t i : m_active_indices)
m_pixels.push_back(m_detector->createPixel(m_detector->roiToFullIndex(i)));
}
void ScatteringSimulation::runComputation(const ReSample& re_sample, size_t i, double weight)
{
if (m_cache.empty())
m_cache.resize(nElements(), 0.0);
const bool isSpecular = m_active_indices[i] == m_detector->indexOfSpecular(beam());
DiffuseElement ele(beam().wavelength(), beam().alpha_i(), beam().phi_i(), m_pixels[i],
beam().polMatrix(), m_detector->analyzer().matrix(), isSpecular);
double intensity = Compute::scattered_and_reflected(re_sample, options(), ele);
if (const auto* footprint = beam().footprint())
intensity *= footprint->calculate(beam().alpha_i());
double sin_alpha_i = std::abs(std::sin(beam().alpha_i()));
if (sin_alpha_i == 0.0) {
intensity = 0;
} else {
const double solid_angle = m_pixels[i]->solidAngle();
intensity *= m_beam->intensity() * solid_angle / sin_alpha_i;
}
m_cache[i] += intensity * weight;
progress().incrementDone(1);
}
//... Overridden getters:
bool ScatteringSimulation::force_polarized() const
{
return m_detector->analyzer().BlochVector() != R3{};
}
size_t ScatteringSimulation::nElements() const
{
return m_active_indices.size();
}
Datafield ScatteringSimulation::packResult() const
{
Datafield result(m_detector->createDetectorMap());
for (size_t i = 0; i < m_active_indices.size(); ++i)
result.setAt(m_active_indices[i], m_cache[i]);
m_detector->applyDetectorResolution(&result);
if (background())
for (size_t i : m_active_indices)
result[i] = background()->addBackground(result[i]);
return result;
}
|