File: FourierTransformTest.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (265 lines) | stat: -rw-r--r-- 11,425 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#include "Base/Math/FourierTransform.h"

#include "Device/Data/Datafield.h"
#include "Tests/GTestWrapper/google_test.h"

// Testing implementation of 1D FT with with low freuency centering
TEST(FourierTransform, fft1D)
{
    std::vector<double> signal_odd({0, 0, 1, 0, 0, 1, 1});     // odd # input size
    std::vector<double> signal_even({0, 0, 1, 0, 0, 1, 1, 2}); // even # input size

    FourierTransform ft;

    // shift, odd
    std::vector<double> signal_odd_shifted = ft.fftshift(signal_odd);
    signal_odd_shifted = ft.ifftshift(signal_odd_shifted);
    for (size_t i = 0; i < signal_odd.size(); ++i)
        EXPECT_NEAR(signal_odd_shifted[i], signal_odd[i], 1e-13);

    // shift, even
    std::vector<double> signal_even_shifted = ft.fftshift(signal_even);
    signal_even_shifted = ft.ifftshift(signal_even_shifted);
    for (size_t i = 0; i < signal_even.size(); ++i)
        EXPECT_NEAR(signal_even_shifted[i], signal_even[i], 1e-13);

    // odd, amplitude, shifted
    std::vector<double> result_amp_odd = ft.ramplitude(signal_odd);
    result_amp_odd = ft.fftshift(result_amp_odd);
    std::vector<double> expected_result_amp_odd(
        {0.55495813, 2.2469796, 0.80193774, 3., 0.80193774, 2.2469796, 0.55495813});

    EXPECT_EQ(signal_odd.size(), result_amp_odd.size());
    EXPECT_EQ(expected_result_amp_odd.size(), result_amp_odd.size());
    for (size_t i = 0; i < signal_odd.size(); ++i)
        EXPECT_NEAR(result_amp_odd[i], expected_result_amp_odd[i], 1e-6);

    // odd
    std::vector<complex_t> result_odd = ft.rfft(signal_odd);
    std::vector<complex_t> expected_result_odd({3. + 0. * I, 0.17844793 + 0.78183148 * I,
                                                -2.02445867 + 0.97492791 * I,
                                                0.34601074 + 0.43388374 * I});

    EXPECT_EQ(signal_odd.size() / 2 + 1, result_odd.size());
    EXPECT_EQ(expected_result_odd.size(), result_odd.size());
    for (size_t i = 0; i < result_odd.size(); ++i)
        EXPECT_NEAR(abs(result_odd[i] - expected_result_odd[i]), 0, abs(result_odd[i]) * 1e-8);

    // odd, inverse
    std::vector<double> result_inv_odd = ft.irfft(result_odd, signal_odd.size());

    EXPECT_EQ(signal_odd.size(), result_inv_odd.size());
    for (size_t i = 0; i < signal_odd.size(); ++i)
        EXPECT_NEAR(result_inv_odd[i], signal_odd[i], 1e-8);

    // even, amplitude, shifted
    std::vector<double> result_amp_even = ft.ramplitude(signal_even);
    result_amp_even = ft.fftshift(result_amp_even);
    std::vector<double> expected_result_amp_even(
        {1., 2.23606798, 2.23606798, 2.23606798, 5., 2.23606798, 2.23606798, 2.23606798});

    EXPECT_EQ(signal_even.size(), result_amp_even.size());
    EXPECT_EQ(expected_result_amp_even.size(), result_amp_even.size());
    for (size_t i = 0; i < signal_even.size(); ++i)
        EXPECT_NEAR(result_amp_even[i], expected_result_amp_even[i], 1e-6);

    // even
    std::vector<complex_t> result_even = ft.rfft(signal_even);
    std::vector<complex_t> expected_result_even({5. + 0. * I, 0.70710678 + 2.12132034 * I,
                                                 -2. + 1. * I, -0.70710678 + 2.12132034 * I,
                                                 -1. + 0. * I});

    EXPECT_EQ(signal_even.size() / 2 + 1, result_even.size());
    EXPECT_EQ(expected_result_even.size(), result_even.size());
    for (size_t i = 0; i < result_even.size(); ++i)
        EXPECT_NEAR(abs(result_even[i] - expected_result_even[i]), 0, abs(result_even[i]) * 1e-8);

    // even, inverse
    std::vector<double> result_inv_even = ft.irfft(result_even, signal_even.size());

    EXPECT_EQ(signal_even.size(), result_inv_even.size());
    for (size_t i = 0; i < signal_even.size(); ++i)
        EXPECT_NEAR(result_inv_even[i], signal_even[i], 1e-8);
}

// Testing implementation of 2D FT with low freuency centering for the following:

// 3x5 input of all zeros
TEST(FourierTransform, fft2DTest1)
{
    double2d_t signal({{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}});
    double2d_t expected_result({{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}});

    FourierTransform ft;
    double2d_t result = ft.ramplitude(signal);
    result = ft.fftshift(result);

    for (size_t i = 0; i < signal.size(); ++i)
        for (size_t j = 0; j < signal[0].size(); ++j)
            EXPECT_NEAR(result[i][j], expected_result[i][j], 1e-6);
}

// 4x5 input of all zeros except for 1 element
TEST(FourierTransform, fft2DTest2)
{
    double2d_t signal({{0, 0, 0, 0, 0}, {0, 0, 2, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}});
    double2d_t expected_result(
        {{2, 2, 2, 2, 2}, {2, 2, 2, 2, 2}, {2, 2, 2, 2, 2}, {2, 2, 2, 2, 2}});

    FourierTransform ft;
    double2d_t result = ft.ramplitude(signal);
    result = ft.fftshift(result);

    for (size_t i = 0; i < signal.size(); ++i)
        for (size_t j = 0; j < signal[0].size(); ++j)
            EXPECT_NEAR(result[i][j], expected_result[i][j], 1e-6);
}

// 6x6 input of all ones except for 1 element
TEST(FourierTransform, fft2DTest3)
{
    double2d_t signal({{1, 1, 1, 1, 1, 1},
                       {1, 1, 1, 1, 1, 1},
                       {1, 1, 1, 1, 1, 1},
                       {1, 1, 1, 1, 1, 1},
                       {1, 1, 1, 1, 1, 32},
                       {1, 1, 1, 1, 1, 1}});
    double2d_t expected_result({{31, 31, 31, 31, 31, 31},
                                {31, 31, 31, 31, 31, 31},
                                {31, 31, 31, 31, 31, 31},
                                {31, 31, 31, 67, 31, 31},
                                {31, 31, 31, 31, 31, 31},
                                {31, 31, 31, 31, 31, 31}});

    FourierTransform ft;
    double2d_t result = ft.ramplitude(signal);
    result = ft.fftshift(result);

    for (size_t i = 0; i < signal.size(); ++i)
        for (size_t j = 0; j < signal[0].size(); ++j)
            EXPECT_NEAR(result[i][j], expected_result[i][j], 1e-6);
}

// 3x5 input with 1 row of all zeros
TEST(FourierTransform, fft2DTest4)
{
    double2d_t signal({{1, 88, 0, 1, 0}, {0, 1, 1, 1, 0}, {0, 0, 0, 0, 0}});

    FourierTransform ft;

    // shift
    double2d_t signal_shifted = ft.fftshift(signal);
    signal_shifted = ft.ifftshift(signal_shifted);
    for (size_t i = 0; i < signal.size(); ++i)
        for (size_t j = 0; j < signal[0].size(); ++j)
            EXPECT_NEAR(signal_shifted[i][j], signal[i][j], 1e-13);

    // amplitude, shifted
    double2d_t expected_result_amp(
        {{87.56947917, 85.92017286, 88.53812738, 88.59651195, 86.95382846},
         {88.02055461, 88.00785173, 93., 88.00785173, 88.02055461},
         {86.95382846, 88.59651195, 88.53812738, 85.92017286, 87.56947917}});

    double2d_t result_amp = ft.ramplitude(signal);
    result_amp = ft.fftshift(result_amp);

    for (size_t i = 0; i < signal.size(); ++i)
        for (size_t j = 0; j < signal[0].size(); ++j)
            EXPECT_NEAR(result_amp[i][j], expected_result_amp[i][j], 1e-6);

    // complex spectrum
    std::vector<std::vector<complex_t>> expected_result(
        {{93. + 0. * I, 26.07546152 - 84.0562447 * I, -70.07546152 - 53.26394397 * I},
         {88.5 - 2.59807621 * I, 27.2153479 - 81.49601795 * I, -70.29802397 - 52.21686996 * I},
         {88.5 + 2.59807621 * I, 28.86262611 - 83.76330189 * I, -69.27995005 - 52.54766223 * I}});
    std::vector<std::vector<complex_t>> result = ft.rfft(signal);

    EXPECT_EQ(signal.size(), result.size());
    EXPECT_EQ(signal[0].size() / 2 + 1, result[0].size());
    for (size_t i = 0; i < expected_result.size(); ++i)
        for (size_t j = 0; j < expected_result[0].size(); ++j)
            EXPECT_NEAR(abs(result[i][j] - expected_result[i][j]), 0, abs(result[i][j]) * 1e-8);

    // inverse
    double2d_t result_inv = ft.irfft(result, signal[0].size());

    EXPECT_EQ(signal[0].size(), result_inv[0].size());
    for (size_t i = 0; i < signal.size(); ++i)
        for (size_t j = 0; j < signal[0].size(); ++j)
            EXPECT_NEAR(result_inv[i][j], signal[i][j], 1e-13);
}

// 4x4 input
TEST(FourierTransform, fft2DTest5)
{
    double2d_t signal({{1, 0, 0, 5}, {1, 0, 0, 0}, {0, 1, 1, 1}, {0, 1, 1, 1}});

    FourierTransform ft;

    // shift
    double2d_t signal_shifted = ft.fftshift(signal);
    signal_shifted = ft.ifftshift(signal_shifted);
    for (size_t i = 0; i < signal.size(); ++i)
        for (size_t j = 0; j < signal[0].size(); ++j)
            EXPECT_NEAR(signal_shifted[i][j], signal[i][j], 1e-13);

    // amplitude, shifted
    double2d_t expected_result_amp({{5., 5., 5., 5.},
                                    {3.60555128, 3.60555128, 3.60555128, 7.28010989},
                                    {5., 5., 13., 5.},
                                    {3.60555128, 7.28010989, 3.60555128, 3.60555128}});

    double2d_t result_amp = ft.ramplitude(signal);
    result_amp = ft.fftshift(result_amp);

    for (size_t i = 0; i < signal.size(); ++i)
        for (size_t j = 0; j < signal[0].size(); ++j)
            EXPECT_NEAR(result_amp[i][j], expected_result_amp[i][j], 1e-6);

    // complex spectrum
    std::vector<std::vector<complex_t>> expected_result({{13. + 0. * I, 0. + 5. * I, -5. + 0. * I},
                                                         {3. + 2. * I, 2. + 3. * I, -3. - 2. * I},
                                                         {5. + 0. * I, 0. + 5. * I, -5. + 0. * I},
                                                         {3. - 2. * I, 2. + 7. * I, -3. + 2. * I}});
    std::vector<std::vector<complex_t>> result = ft.rfft(signal);

    EXPECT_EQ(signal.size(), result.size());
    EXPECT_EQ(signal[0].size() / 2 + 1, result[0].size());
    for (size_t i = 0; i < expected_result.size(); ++i)
        for (size_t j = 0; j < expected_result[0].size(); ++j)
            EXPECT_NEAR(abs(result[i][j] - expected_result[i][j]), 0, abs(result[i][j]) * 1e-8);

    // inverse
    double2d_t result_inv = ft.irfft(result, signal[0].size());

    EXPECT_EQ(signal[0].size(), result_inv[0].size());
    for (size_t i = 0; i < signal.size(); ++i)
        for (size_t j = 0; j < signal[0].size(); ++j)
            EXPECT_NEAR(result_inv[i][j], signal[i][j], 1e-13);
}

// 7x7 input
TEST(FourierTransform, fft2DTest6)
{
    double2d_t signal{{1., 0., 0., 0., 0., 0., 0.}, {1., 0., 0., 0., 0., 0., 0.},
                      {1., 0., 5., 0., 0., 0., 0.}, {1., 0., 0., 0., 0., 0., 0.},
                      {1., 0., 0., 0., 0., 5., 0.}, {1., 0., 0., 0., 0., 0., 0.},
                      {1., 0., 0., 0., 0., 0., 0.}};

    double2d_t expected_result(
        {{9.00968868, 6.23489802, 6.23489802, 9.00968868, 2.22520934, 10., 2.22520934},
         {9.00968868, 2.22520934, 10., 2.22520934, 9.00968868, 6.23489802, 6.23489802},
         {2.22520934, 9.00968868, 6.23489802, 6.23489802, 9.00968868, 2.22520934, 10.},
         {13.23489802, 2.00968868, 4.77479066, 17., 4.77479066, 2.00968868, 13.23489802},
         {10., 2.22520934, 9.00968868, 6.23489802, 6.23489802, 9.00968868, 2.22520934},
         {6.23489802, 6.23489802, 9.00968868, 2.22520934, 10., 2.22520934, 9.00968868},
         {2.22520934, 10., 2.22520934, 9.00968868, 6.23489802, 6.23489802, 9.00968868}});

    FourierTransform ft;
    double2d_t result = ft.ramplitude(signal);
    result = ft.fftshift(result);

    for (size_t i = 0; i < signal.size(); ++i)
        for (size_t j = 0; j < signal[0].size(); ++j)
            EXPECT_NEAR(result[i][j], expected_result[i][j], 1e-8);
}