1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265
|
#include "Base/Math/FourierTransform.h"
#include "Device/Data/Datafield.h"
#include "Tests/GTestWrapper/google_test.h"
// Testing implementation of 1D FT with with low freuency centering
TEST(FourierTransform, fft1D)
{
std::vector<double> signal_odd({0, 0, 1, 0, 0, 1, 1}); // odd # input size
std::vector<double> signal_even({0, 0, 1, 0, 0, 1, 1, 2}); // even # input size
FourierTransform ft;
// shift, odd
std::vector<double> signal_odd_shifted = ft.fftshift(signal_odd);
signal_odd_shifted = ft.ifftshift(signal_odd_shifted);
for (size_t i = 0; i < signal_odd.size(); ++i)
EXPECT_NEAR(signal_odd_shifted[i], signal_odd[i], 1e-13);
// shift, even
std::vector<double> signal_even_shifted = ft.fftshift(signal_even);
signal_even_shifted = ft.ifftshift(signal_even_shifted);
for (size_t i = 0; i < signal_even.size(); ++i)
EXPECT_NEAR(signal_even_shifted[i], signal_even[i], 1e-13);
// odd, amplitude, shifted
std::vector<double> result_amp_odd = ft.ramplitude(signal_odd);
result_amp_odd = ft.fftshift(result_amp_odd);
std::vector<double> expected_result_amp_odd(
{0.55495813, 2.2469796, 0.80193774, 3., 0.80193774, 2.2469796, 0.55495813});
EXPECT_EQ(signal_odd.size(), result_amp_odd.size());
EXPECT_EQ(expected_result_amp_odd.size(), result_amp_odd.size());
for (size_t i = 0; i < signal_odd.size(); ++i)
EXPECT_NEAR(result_amp_odd[i], expected_result_amp_odd[i], 1e-6);
// odd
std::vector<complex_t> result_odd = ft.rfft(signal_odd);
std::vector<complex_t> expected_result_odd({3. + 0. * I, 0.17844793 + 0.78183148 * I,
-2.02445867 + 0.97492791 * I,
0.34601074 + 0.43388374 * I});
EXPECT_EQ(signal_odd.size() / 2 + 1, result_odd.size());
EXPECT_EQ(expected_result_odd.size(), result_odd.size());
for (size_t i = 0; i < result_odd.size(); ++i)
EXPECT_NEAR(abs(result_odd[i] - expected_result_odd[i]), 0, abs(result_odd[i]) * 1e-8);
// odd, inverse
std::vector<double> result_inv_odd = ft.irfft(result_odd, signal_odd.size());
EXPECT_EQ(signal_odd.size(), result_inv_odd.size());
for (size_t i = 0; i < signal_odd.size(); ++i)
EXPECT_NEAR(result_inv_odd[i], signal_odd[i], 1e-8);
// even, amplitude, shifted
std::vector<double> result_amp_even = ft.ramplitude(signal_even);
result_amp_even = ft.fftshift(result_amp_even);
std::vector<double> expected_result_amp_even(
{1., 2.23606798, 2.23606798, 2.23606798, 5., 2.23606798, 2.23606798, 2.23606798});
EXPECT_EQ(signal_even.size(), result_amp_even.size());
EXPECT_EQ(expected_result_amp_even.size(), result_amp_even.size());
for (size_t i = 0; i < signal_even.size(); ++i)
EXPECT_NEAR(result_amp_even[i], expected_result_amp_even[i], 1e-6);
// even
std::vector<complex_t> result_even = ft.rfft(signal_even);
std::vector<complex_t> expected_result_even({5. + 0. * I, 0.70710678 + 2.12132034 * I,
-2. + 1. * I, -0.70710678 + 2.12132034 * I,
-1. + 0. * I});
EXPECT_EQ(signal_even.size() / 2 + 1, result_even.size());
EXPECT_EQ(expected_result_even.size(), result_even.size());
for (size_t i = 0; i < result_even.size(); ++i)
EXPECT_NEAR(abs(result_even[i] - expected_result_even[i]), 0, abs(result_even[i]) * 1e-8);
// even, inverse
std::vector<double> result_inv_even = ft.irfft(result_even, signal_even.size());
EXPECT_EQ(signal_even.size(), result_inv_even.size());
for (size_t i = 0; i < signal_even.size(); ++i)
EXPECT_NEAR(result_inv_even[i], signal_even[i], 1e-8);
}
// Testing implementation of 2D FT with low freuency centering for the following:
// 3x5 input of all zeros
TEST(FourierTransform, fft2DTest1)
{
double2d_t signal({{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}});
double2d_t expected_result({{0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}});
FourierTransform ft;
double2d_t result = ft.ramplitude(signal);
result = ft.fftshift(result);
for (size_t i = 0; i < signal.size(); ++i)
for (size_t j = 0; j < signal[0].size(); ++j)
EXPECT_NEAR(result[i][j], expected_result[i][j], 1e-6);
}
// 4x5 input of all zeros except for 1 element
TEST(FourierTransform, fft2DTest2)
{
double2d_t signal({{0, 0, 0, 0, 0}, {0, 0, 2, 0, 0}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}});
double2d_t expected_result(
{{2, 2, 2, 2, 2}, {2, 2, 2, 2, 2}, {2, 2, 2, 2, 2}, {2, 2, 2, 2, 2}});
FourierTransform ft;
double2d_t result = ft.ramplitude(signal);
result = ft.fftshift(result);
for (size_t i = 0; i < signal.size(); ++i)
for (size_t j = 0; j < signal[0].size(); ++j)
EXPECT_NEAR(result[i][j], expected_result[i][j], 1e-6);
}
// 6x6 input of all ones except for 1 element
TEST(FourierTransform, fft2DTest3)
{
double2d_t signal({{1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 1, 32},
{1, 1, 1, 1, 1, 1}});
double2d_t expected_result({{31, 31, 31, 31, 31, 31},
{31, 31, 31, 31, 31, 31},
{31, 31, 31, 31, 31, 31},
{31, 31, 31, 67, 31, 31},
{31, 31, 31, 31, 31, 31},
{31, 31, 31, 31, 31, 31}});
FourierTransform ft;
double2d_t result = ft.ramplitude(signal);
result = ft.fftshift(result);
for (size_t i = 0; i < signal.size(); ++i)
for (size_t j = 0; j < signal[0].size(); ++j)
EXPECT_NEAR(result[i][j], expected_result[i][j], 1e-6);
}
// 3x5 input with 1 row of all zeros
TEST(FourierTransform, fft2DTest4)
{
double2d_t signal({{1, 88, 0, 1, 0}, {0, 1, 1, 1, 0}, {0, 0, 0, 0, 0}});
FourierTransform ft;
// shift
double2d_t signal_shifted = ft.fftshift(signal);
signal_shifted = ft.ifftshift(signal_shifted);
for (size_t i = 0; i < signal.size(); ++i)
for (size_t j = 0; j < signal[0].size(); ++j)
EXPECT_NEAR(signal_shifted[i][j], signal[i][j], 1e-13);
// amplitude, shifted
double2d_t expected_result_amp(
{{87.56947917, 85.92017286, 88.53812738, 88.59651195, 86.95382846},
{88.02055461, 88.00785173, 93., 88.00785173, 88.02055461},
{86.95382846, 88.59651195, 88.53812738, 85.92017286, 87.56947917}});
double2d_t result_amp = ft.ramplitude(signal);
result_amp = ft.fftshift(result_amp);
for (size_t i = 0; i < signal.size(); ++i)
for (size_t j = 0; j < signal[0].size(); ++j)
EXPECT_NEAR(result_amp[i][j], expected_result_amp[i][j], 1e-6);
// complex spectrum
std::vector<std::vector<complex_t>> expected_result(
{{93. + 0. * I, 26.07546152 - 84.0562447 * I, -70.07546152 - 53.26394397 * I},
{88.5 - 2.59807621 * I, 27.2153479 - 81.49601795 * I, -70.29802397 - 52.21686996 * I},
{88.5 + 2.59807621 * I, 28.86262611 - 83.76330189 * I, -69.27995005 - 52.54766223 * I}});
std::vector<std::vector<complex_t>> result = ft.rfft(signal);
EXPECT_EQ(signal.size(), result.size());
EXPECT_EQ(signal[0].size() / 2 + 1, result[0].size());
for (size_t i = 0; i < expected_result.size(); ++i)
for (size_t j = 0; j < expected_result[0].size(); ++j)
EXPECT_NEAR(abs(result[i][j] - expected_result[i][j]), 0, abs(result[i][j]) * 1e-8);
// inverse
double2d_t result_inv = ft.irfft(result, signal[0].size());
EXPECT_EQ(signal[0].size(), result_inv[0].size());
for (size_t i = 0; i < signal.size(); ++i)
for (size_t j = 0; j < signal[0].size(); ++j)
EXPECT_NEAR(result_inv[i][j], signal[i][j], 1e-13);
}
// 4x4 input
TEST(FourierTransform, fft2DTest5)
{
double2d_t signal({{1, 0, 0, 5}, {1, 0, 0, 0}, {0, 1, 1, 1}, {0, 1, 1, 1}});
FourierTransform ft;
// shift
double2d_t signal_shifted = ft.fftshift(signal);
signal_shifted = ft.ifftshift(signal_shifted);
for (size_t i = 0; i < signal.size(); ++i)
for (size_t j = 0; j < signal[0].size(); ++j)
EXPECT_NEAR(signal_shifted[i][j], signal[i][j], 1e-13);
// amplitude, shifted
double2d_t expected_result_amp({{5., 5., 5., 5.},
{3.60555128, 3.60555128, 3.60555128, 7.28010989},
{5., 5., 13., 5.},
{3.60555128, 7.28010989, 3.60555128, 3.60555128}});
double2d_t result_amp = ft.ramplitude(signal);
result_amp = ft.fftshift(result_amp);
for (size_t i = 0; i < signal.size(); ++i)
for (size_t j = 0; j < signal[0].size(); ++j)
EXPECT_NEAR(result_amp[i][j], expected_result_amp[i][j], 1e-6);
// complex spectrum
std::vector<std::vector<complex_t>> expected_result({{13. + 0. * I, 0. + 5. * I, -5. + 0. * I},
{3. + 2. * I, 2. + 3. * I, -3. - 2. * I},
{5. + 0. * I, 0. + 5. * I, -5. + 0. * I},
{3. - 2. * I, 2. + 7. * I, -3. + 2. * I}});
std::vector<std::vector<complex_t>> result = ft.rfft(signal);
EXPECT_EQ(signal.size(), result.size());
EXPECT_EQ(signal[0].size() / 2 + 1, result[0].size());
for (size_t i = 0; i < expected_result.size(); ++i)
for (size_t j = 0; j < expected_result[0].size(); ++j)
EXPECT_NEAR(abs(result[i][j] - expected_result[i][j]), 0, abs(result[i][j]) * 1e-8);
// inverse
double2d_t result_inv = ft.irfft(result, signal[0].size());
EXPECT_EQ(signal[0].size(), result_inv[0].size());
for (size_t i = 0; i < signal.size(); ++i)
for (size_t j = 0; j < signal[0].size(); ++j)
EXPECT_NEAR(result_inv[i][j], signal[i][j], 1e-13);
}
// 7x7 input
TEST(FourierTransform, fft2DTest6)
{
double2d_t signal{{1., 0., 0., 0., 0., 0., 0.}, {1., 0., 0., 0., 0., 0., 0.},
{1., 0., 5., 0., 0., 0., 0.}, {1., 0., 0., 0., 0., 0., 0.},
{1., 0., 0., 0., 0., 5., 0.}, {1., 0., 0., 0., 0., 0., 0.},
{1., 0., 0., 0., 0., 0., 0.}};
double2d_t expected_result(
{{9.00968868, 6.23489802, 6.23489802, 9.00968868, 2.22520934, 10., 2.22520934},
{9.00968868, 2.22520934, 10., 2.22520934, 9.00968868, 6.23489802, 6.23489802},
{2.22520934, 9.00968868, 6.23489802, 6.23489802, 9.00968868, 2.22520934, 10.},
{13.23489802, 2.00968868, 4.77479066, 17., 4.77479066, 2.00968868, 13.23489802},
{10., 2.22520934, 9.00968868, 6.23489802, 6.23489802, 9.00968868, 2.22520934},
{6.23489802, 6.23489802, 9.00968868, 2.22520934, 10., 2.22520934, 9.00968868},
{2.22520934, 10., 2.22520934, 9.00968868, 6.23489802, 6.23489802, 9.00968868}});
FourierTransform ft;
double2d_t result = ft.ramplitude(signal);
result = ft.fftshift(result);
for (size_t i = 0; i < signal.size(); ++i)
for (size_t j = 0; j < signal[0].size(); ++j)
EXPECT_NEAR(result[i][j], expected_result[i][j], 1e-8);
}
|