File: MaterialTest.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (227 lines) | stat: -rw-r--r-- 10,437 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#include "Base/Const/Units.h"

#include "Base/Vector/RotMatrix.h"
#include "Base/Vector/WavevectorInfo.h"
#include "Sample/Material/MaterialFactoryFuncs.h"
#include "Sample/Material/MaterialUtil.h"
#include "Sample/Scattering/Rotations.h"
#include "Tests/GTestWrapper/google_test.h"
#include <iostream>
#include <numbers>

using std::numbers::pi;

TEST(Material, MaterialConstruction)
{
    complex_t material_data = complex_t(0.0, 2.0);
    complex_t refIndex = complex_t(1.0 - material_data.real(), material_data.imag());
    R3 magnetism = R3(3.0, 4.0, 5.0);

    Material material = RefractiveMaterial("MagMaterial", refIndex, magnetism);
    EXPECT_EQ(material_data, material.refractiveIndex_or_SLD());
    EXPECT_EQ(magnetism, material.magnetization());

    Material material2 =
        RefractiveMaterial("MagMaterial", material_data.real(), material_data.imag(), magnetism);
    EXPECT_EQ(material_data, material2.refractiveIndex_or_SLD());
    EXPECT_EQ(magnetism, material2.magnetization());

    Material material3 =
        MaterialBySLD("MagMaterial", material_data.real(), material_data.imag(), magnetism);
    EXPECT_EQ(material_data, material3.refractiveIndex_or_SLD());
    EXPECT_EQ(magnetism, material3.magnetization());

    R3 default_magnetism = R3{};

    Material material4 = RefractiveMaterial("Material", refIndex);
    EXPECT_EQ(material_data, material4.refractiveIndex_or_SLD());
    EXPECT_EQ(default_magnetism, material4.magnetization());

    Material material5 = RefractiveMaterial("Material", material_data.real(), material_data.imag());
    EXPECT_EQ(material_data, material5.refractiveIndex_or_SLD());
    EXPECT_EQ(default_magnetism, material5.magnetization());

    Material material6 = MaterialBySLD("Material", material_data.real(), material_data.imag());
    EXPECT_EQ(default_magnetism, material6.magnetization());
}

TEST(Material, MaterialTransform)
{
    complex_t material_data = complex_t(1.0, 0.0);
    complex_t refIndex = complex_t(1.0 - material_data.real(), material_data.imag());
    R3 magnetism = R3(1.0, 0.0, 0.0);
    RotationZ transform(90. * Units::deg);
    R3 transformed_mag = transform.transformed(magnetism);

    Material material = RefractiveMaterial("Material", refIndex, magnetism);
    Material material2 = material.rotatedMaterial(transform.rotMatrix());
    EXPECT_EQ(material_data, material2.refractiveIndex_or_SLD());
    // transformed_mag equals material2.magnetization except on i368:
    EXPECT_TRUE(fabs((transformed_mag - material2.magnetization()).x()) < 3e-16);
    EXPECT_TRUE(fabs((transformed_mag - material2.magnetization()).y()) < 3e-16);
    EXPECT_TRUE(fabs((transformed_mag - material2.magnetization()).z()) < 3e-16);

    Material material3 =
        MaterialBySLD("Material", material_data.real(), material_data.imag(), magnetism);
    Material material4 = material.rotatedMaterial(transform.rotMatrix());
    EXPECT_EQ(material_data, material4.refractiveIndex_or_SLD());
    // transformed_mag equals material4.magnetization except on i368:
    EXPECT_TRUE(fabs((transformed_mag - material4.magnetization()).x()) < 3e-16);
    EXPECT_TRUE(fabs((transformed_mag - material4.magnetization()).y()) < 3e-16);
    EXPECT_TRUE(fabs((transformed_mag - material4.magnetization()).z()) < 3e-16);
}

TEST(Material, DefaultMaterials)
{
    Material material = Vacuum();
    const double dummy_wavelength = 1.0;

    EXPECT_EQ(material.refractiveIndex_or_SLD(), complex_t());
    EXPECT_EQ(material.refractiveIndex_or_SLD(), MaterialBySLD().refractiveIndex_or_SLD());

    EXPECT_EQ(material.magnetization(), R3{});
    EXPECT_EQ(material.magnetization(), MaterialBySLD().magnetization());

    EXPECT_EQ(material.refractiveIndex(dummy_wavelength), complex_t(1.0, 0.0));
    EXPECT_EQ(material.refractiveIndex(dummy_wavelength),
              MaterialBySLD().refractiveIndex(dummy_wavelength));

    EXPECT_TRUE(material.typeID() == Vacuum().typeID());
    EXPECT_FALSE(material.typeID() == MaterialBySLD().typeID());
}

TEST(Material, Computation)
{
    // Reference data for Fe taken from
    // https://sld-calculator.appspot.com
    // http://www.ati.ac.at/~neutropt/scattering/table.html
    const double bc = 9.45e-6;      // nm, bound coherent scattering length
    const double abs_cs = 2.56e-10; // nm^2, absorption cross-section for 2200 m/s neutrons
    const double basic_wavelength = 0.1798197; // nm, wavelength of 2200 m/s neutrons
    const double mol_mass = 55.845;            // g/mol, Fe molar mass
    const double avog_number = 6.022e23;       // mol^{-1}, Avogadro number
    const double density = 7.874e-21;          // g/nm^3, Fe material density
    const double number_density = avog_number * density / mol_mass; // 1/nm^3, Fe number density
    const double sld_real = number_density * bc;
    const double sld_imag = number_density * abs_cs / (2.0 * basic_wavelength);
    const double sq_angstroms = Units::angstrom * Units::angstrom;

    const complex_t sld_ref(8.0241e-04, // nm^{-2}, reference data
                            6.0448e-8); // taken from https://sld-calculator.appspot.com/

    // checking input data and reference values are the same
    EXPECT_NEAR(2.0 * (sld_ref.real() - sld_real) / (sld_ref.real() + sld_real), 0.0, 1e-3);
    EXPECT_NEAR(2.0 * (sld_ref.imag() - sld_imag) / (sld_ref.imag() + sld_imag), 0.0, 1e-3);

    const double wl_factor_2200 = basic_wavelength * basic_wavelength / pi;
    const double wl_factor_1100 = 4.0 * basic_wavelength * basic_wavelength / pi;

    // MaterialBySLD accepts sld in AA^{-2}
    Material material = MaterialBySLD("Fe", sld_real * sq_angstroms, sld_imag * sq_angstroms);

    complex_t sld_res_2200 = (1.0 - material.refractiveIndex2(basic_wavelength)) / wl_factor_2200;
    complex_t sld_res_1100 =
        (1.0 - material.refractiveIndex2(2.0 * basic_wavelength)) / wl_factor_1100;

    // change the sign of imaginary part according to internal convention
    sld_res_2200 = std::conj(sld_res_2200);
    sld_res_1100 = std::conj(sld_res_1100);

    EXPECT_NEAR(0.0, (sld_ref.real() - sld_res_2200.real()) / sld_ref.real(), 1e-3);
    EXPECT_NEAR(0.0, (sld_ref.imag() - sld_res_2200.imag()) / sld_ref.imag(), 1e-3);
    EXPECT_NEAR(0.0, (sld_ref.real() - sld_res_1100.real()) / sld_ref.real(), 1e-3);
    EXPECT_NEAR(0.0, (sld_ref.imag() - sld_res_1100.imag()) / sld_ref.imag(), 1e-3);

    const complex_t refr_index = material.refractiveIndex(2.0 * basic_wavelength);
    WavevectorInfo wv_info(C3{}, C3{}, 2.0 * basic_wavelength);

    Material material2 =
        RefractiveMaterial("Fe", 1.0 - refr_index.real(), std::abs(refr_index.imag()));
    const complex_t subtrSLD = material2.scalarSubtrSLD(wv_info);
    const complex_t subtrSLDWlIndep = material.scalarSubtrSLD(wv_info);
    EXPECT_NEAR(subtrSLD.real(), subtrSLDWlIndep.real(), 1e-10);
    EXPECT_NEAR(subtrSLD.imag(), subtrSLDWlIndep.imag(), 1e-10);
}

TEST(Material, AverageRefractiveMaterials)
{
    R3 magnetization = R3{1.0, 0.0, 0.0};
    const Material material = RefractiveMaterial("Material", 0.5, 0.5, magnetization);
    const Admixtures regions = {{OneAdmixture{0.25, material}, OneAdmixture{0.25, material}}};

    const Material material_avr = MaterialUtil::averagedMaterial(material, regions);
    EXPECT_EQ(material_avr.magnetization(), magnetization);
    EXPECT_DOUBLE_EQ(material_avr.refractiveIndex_or_SLD().real(), 0.5);
    EXPECT_DOUBLE_EQ(material_avr.refractiveIndex_or_SLD().imag(), 0.5);
    EXPECT_TRUE(material_avr.typeID() == MATERIAL_TYPES::RefractiveMaterial);

    const Material material3 = MaterialBySLD("Material3", 0.5, 0.5, magnetization);
    EXPECT_THROW(MaterialUtil::averagedMaterial(material3, regions), std::runtime_error);
}

TEST(Material, AverageSLDMaterials)
{
    R3 magnetization = R3{1.0, 0.0, 0.0};
    const Material material = MaterialBySLD("Material", 0.5, 0.5, magnetization);
    const Admixtures regions = {{OneAdmixture{0.25, material}, OneAdmixture{0.25, material}}};

    const Material material_avr = MaterialUtil::averagedMaterial(material, regions);
    EXPECT_EQ(material_avr.magnetization(), magnetization);
    EXPECT_DOUBLE_EQ(material_avr.refractiveIndex_or_SLD().real(), 0.5);
    EXPECT_DOUBLE_EQ(material_avr.refractiveIndex_or_SLD().imag(), 0.5);
    EXPECT_TRUE(material_avr.typeID() == MATERIAL_TYPES::MaterialBySLD);
}

TEST(Material, AverageMixedMaterials)
{
    R3 magnetization = R3{1.0, 0.0, 0.0};
    const Material material = RefractiveMaterial("Material", 0.5, 0.5, magnetization);
    const Admixtures regions = {{OneAdmixture{0.25, material}, OneAdmixture{0.25, material}}};

    const Material material3 = MaterialBySLD("Material3", 0.5, 0.5, magnetization);
    EXPECT_THROW(MaterialUtil::averagedMaterial(material3, regions), std::runtime_error);
}

TEST(Material, TypeIds)
{
    Material material = MaterialBySLD("Material", 1.0, 1.0);
    Material material2 = RefractiveMaterial("Material", 1.0, 1.0);
    EXPECT_TRUE(material.typeID() == MATERIAL_TYPES::MaterialBySLD);
    EXPECT_TRUE(material2.typeID() == MATERIAL_TYPES::RefractiveMaterial);
    EXPECT_TRUE(material.typeID() != material2.typeID());
    Material material3 = MaterialBySLD("Material", 1.0, 1.0);
    EXPECT_TRUE(material.typeID() == material3.typeID());
}

TEST(Material, MaterialComparison)
{
    Material material = MaterialBySLD("Material", 1.0, 1.0);
    Material material2 = RefractiveMaterial("Material", 1.0, 1.0);
    EXPECT_TRUE(material == material);
    EXPECT_FALSE(material != material);
    EXPECT_FALSE(material == material2);

    Material material3 = RefractiveMaterial("Material3", 2.0, 2.0);
    EXPECT_FALSE(material3 == material2);
    EXPECT_TRUE(material3 != material2);

    Material material4 = RefractiveMaterial("Material", 1.0, 1.0, R3{1.0, 2.0, 3.0});
    EXPECT_FALSE(material4 == material2);
    EXPECT_TRUE(material4 != material2);

    EXPECT_FALSE(Vacuum() == MaterialBySLD());
    EXPECT_TRUE(Vacuum() != MaterialBySLD());
}

TEST(Material, MaterialCopy)
{
    complex_t material_data = complex_t(0.0, 2.0);
    complex_t refIndex = complex_t(1.0 - material_data.real(), material_data.imag());
    R3 magnetism = R3(3.0, 4.0, 5.0);
    Material material = RefractiveMaterial("MagMaterial", refIndex, magnetism);

    const Material& copy = material;
    EXPECT_EQ(material_data, copy.refractiveIndex_or_SLD());
    EXPECT_EQ(magnetism, copy.magnetization());
    EXPECT_TRUE(material == copy);
}