1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/* disabled jul21 because ReSample can no longer be copied around
anyway, too complicated, needs to be radically simplified
#include "Base/Const/Units.h"
#include "Resample/Processed/ReSample.h"
#include "Resample/Slice/KzComputation.h"
#include "Resample/Specular/SpecularScalarTanhStrategy.h"
#include "Resample/Specular/TransitionMagneticTanh.h"
#include "Sample/Material/MaterialFactoryFuncs.h"
#include "Sample/Multilayer/Layer.h"
#include "Sample/Multilayer/MultiLayer.h"
#include "Tests/GTestWrapper/google_test.h"
#include <utility>
class SpecularMagneticTest : public ::testing::Test {
protected:
auto static constexpr eps = 1.e-10;
std::unique_ptr<const ReSample> sample_zerofield(bool slab);
std::unique_ptr<const ReSample> sample_degenerate();
template <typename Strategy> void test_degenerate();
template <typename Strategy>
void testZeroField(const R3& k, const ReSample& sample);
template <typename Strategy>
void testcase_zerofield(std::vector<double>&& angles, bool slab = false);
};
template <> void SpecularMagneticTest::test_degenerate<SpecularMagneticTanhStrategy>()
{
R3 v;
Spinor T1p{0.0, 0.0};
Spinor T2p{1.0, 0.0};
Spinor R1p{0.0, 0.0};
Spinor R2p{0.0, 0.0};
Spinor T1m{0.0, 1.0};
Spinor T2m{0.0, 0.0};
Spinor R1m{0.0, 0.0};
Spinor R2m{0.0, 0.0};
auto sample = sample_degenerate();
auto result =
std::make_unique<SpecularMagneticTanhStrategy>()->Execute(sample->averageSlices(), v);
for (auto& coeff : result) {
EXPECT_NEAR_VECTOR2CD(coeff->T1plus(), T1p, eps);
EXPECT_NEAR_VECTOR2CD(coeff->T2plus(), T2p, eps);
EXPECT_NEAR_VECTOR2CD(coeff->T1min(), T1m, eps);
EXPECT_NEAR_VECTOR2CD(coeff->T2min(), T2m, eps);
EXPECT_NEAR_VECTOR2CD(coeff->R1plus(), R1p, eps);
EXPECT_NEAR_VECTOR2CD(coeff->R2plus(), R2p, eps);
EXPECT_NEAR_VECTOR2CD(coeff->R1min(), R1m, eps);
EXPECT_NEAR_VECTOR2CD(coeff->R2min(), R2m, eps);
}
}
//! Compares results with scalar case
template <typename Strategy>
void SpecularMagneticTest::testZeroField(const R3& k, const ReSample& sample)
{
const SliceStack& slices = sample.averageSlices();
auto coeffs_scalar = std::make_unique<SpecularScalarTanhStrategy>()->Execute(
slices, Compute::Kz::computeKzFromRefIndices(slices, k));
auto coeffs_zerofield = std::make_unique<Strategy>()->Execute(
slices, Compute::Kz::computeKzFromRefIndices(slices, k));
EXPECT_EQ(coeffs_scalar.size(), coeffs_zerofield.size());
for (size_t i = 0; i < coeffs_scalar.size(); ++i) {
auto* RTScalar = coeffs_scalar[i].get();
auto* RTMatrix = coeffs_zerofield[i].get();
EXPECT_NEAR_VECTOR2CD(RTMatrix->T1plus(), RTScalar->T1plus(), eps);
EXPECT_NEAR_VECTOR2CD(RTMatrix->T2plus(), RTScalar->T2plus(), eps);
EXPECT_NEAR_VECTOR2CD(RTMatrix->R1plus(), RTScalar->R1plus(), eps);
EXPECT_NEAR_VECTOR2CD(RTMatrix->R2plus(), RTScalar->R2plus(), eps);
EXPECT_NEAR_VECTOR2CD(RTMatrix->T1min(), RTScalar->T1min(), eps);
EXPECT_NEAR_VECTOR2CD(RTMatrix->T2min(), RTScalar->T2min(), eps);
EXPECT_NEAR_VECTOR2CD(RTMatrix->R1min(), RTScalar->R1min(), eps);
EXPECT_NEAR_VECTOR2CD(RTMatrix->R2min(), RTScalar->R2min(), eps);
EXPECT_NEAR_VECTOR2CD(RTMatrix->getKz(), RTScalar->getKz(), eps);
}
}
std::unique_ptr<const ReSample> SpecularMagneticTest::sample_degenerate()
{
MultiLayer mLayer;
Material air = RefractiveMaterial("Vacuum", 0, 1.0);
mLayer.addLayer(Layer(air, 0 * Units::nm));
return std::make_unique<ReSample>(ReSample::make(mLayer));
}
TEST_F(SpecularMagneticTest, degenerate_)
{
test_degenerate<SpecularMagneticTanhStrategy>();
}
std::unique_ptr<const ReSample> SpecularMagneticTest::sample_zerofield(bool slab)
{
MultiLayer sample_scalar;
Material substr_material_scalar = RefractiveMaterial("Substrate", 7e-6, 2e-8);
Layer vacuum_layer(RefractiveMaterial("Vacuum", 0.0, 0.0));
Layer substr_layer_scalar(substr_material_scalar);
sample_scalar.addLayer(vacuum_layer);
if (slab) {
Material layer_material = RefractiveMaterial("Layer", 3e-6, 1e-8);
Layer layer(layer_material, 10. * Units::nm);
sample_scalar.addLayer(layer);
}
sample_scalar.addLayer(substr_layer_scalar);
return std::make_unique<ReSample>(ReSample::make(sample_scalar));
}
template <typename Strategy>
void SpecularMagneticTest::testcase_zerofield(std::vector<double>&& angles, bool slab)
{
for (auto& angle : angles) {
auto sample = sample_zerofield(slab);
R3 k = vecOfLambdaAlphaPhi(1.0, angle * Units::deg, 0.0);
testZeroField<Strategy>(k, *sample);
}
}
TEST_F(SpecularMagneticTest, zerofield_positive_k)
{
testcase_zerofield<SpecularMagneticTanhStrategy>({0.0, 1.e-9, 1.e-5, 0.1, 2.0, 10.0});
}
TEST_F(SpecularMagneticTest, zerofield_negative_k)
{
testcase_zerofield<SpecularMagneticTanhStrategy>({-0.0, -1.e-9, -1.e-5, -0.1, -2.0, -10.0});
}
TEST_F(SpecularMagneticTest, zerofield2_positive_k)
{
testcase_zerofield<SpecularMagneticTanhStrategy>({0.0, 1.e-9, 1.e-5, 0.1, 2.0, 10.0}, true);
}
TEST_F(SpecularMagneticTest, zerofield2_negative_k)
{
testcase_zerofield<SpecularMagneticTanhStrategy>({-0.0, -1.e-9, -1.e-5, -0.1, -2.0, -10.0},
true);
}
*/
|