File: MultiLayerTest.cpp

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (240 lines) | stat: -rw-r--r-- 7,708 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#include "Sample/Multilayer/Sample.h"

#include "Base/Const/Units.h"
#include "Sample/Aggregate/ParticleLayout.h"
#include "Sample/Interface/Roughness.h"
#include "Sample/Material/MaterialFactoryFuncs.h"
#include "Sample/Multilayer/Layer.h"
#include "Tests/GTestWrapper/google_test.h"

class MultiLayerTest : public ::testing::Test {
protected:
    MultiLayerTest()
        // The following delta, beta are all unphysical. Values don't matter here.
        : air(RefractiveMaterial("Vacuum", 1e-6, 9e-4))
        , iron(RefractiveMaterial("iron", 2e-5, 8e-5))
        , chromium(RefractiveMaterial("chromium", 3e-7, 7e-6))
        , stone(RefractiveMaterial("stone", 4e-4, 8e-7))
        , topLayer(air, 0 * Units::nm)
        , layer1(iron, 20 * Units::nm)
        , layer2(chromium, 40 * Units::nm)
        , substrate(stone, 0 * Units::nm)
    {
    }
    void set_four()
    {
        mLayer.addLayer(topLayer);
        mLayer.addLayer(layer1);
        mLayer.addLayer(layer2);
        mLayer.addLayer(substrate);
    }

    Sample mLayer;
    const Material air, iron, chromium, stone;
    Layer topLayer, layer1, layer2, substrate;
};

TEST_F(MultiLayerTest, BasicProperty)
{
    // check default properties
    EXPECT_EQ(size_t(0), mLayer.numberOfLayers());

    // adding layers
    mLayer.addLayer(topLayer);
    EXPECT_EQ(size_t(1), mLayer.numberOfLayers());

    mLayer.addLayer(layer1);
    mLayer.addLayer(layer2);
    mLayer.addLayer(substrate);
    EXPECT_EQ(size_t(4), mLayer.numberOfLayers());
}

TEST_F(MultiLayerTest, LayerThicknesses)
{
    set_four();

    // check layer thickness
    EXPECT_EQ(mLayer.layer(0)->thickness(), 0);
    EXPECT_EQ(mLayer.layer(1)->thickness(), 20);
    EXPECT_EQ(mLayer.layer(2)->thickness(), 40);
    EXPECT_EQ(mLayer.layer(3)->thickness(), 0);
}

TEST_F(MultiLayerTest, CheckAllLayers)
{
    set_four();

    // check individual layer
    const Layer* got0 = mLayer.layer(0);
    EXPECT_EQ(0, got0->thickness());

    const Layer* got1 = mLayer.layer(1);
    EXPECT_EQ(20, got1->thickness());

    const Layer* got2 = mLayer.layer(2);
    EXPECT_EQ(40, got2->thickness());

    const Layer* got3 = mLayer.layer(3);
    EXPECT_EQ(0, got3->thickness());
}

TEST_F(MultiLayerTest, LayerInterfaces)
{
    set_four();

    // check interfaces
    const Roughness* roughness1 = mLayer.layer(1)->roughness();
    EXPECT_TRUE(nullptr != roughness1);
    EXPECT_EQ(mLayer.roughnessRMS(1), 0.0);

    const Roughness* roughness2 = mLayer.layer(2)->roughness();
    EXPECT_TRUE(nullptr != roughness2);
    EXPECT_EQ(mLayer.roughnessRMS(2), 0.0);

    const Roughness* roughness3 = mLayer.layer(3)->roughness();
    EXPECT_TRUE(nullptr != roughness3);
    EXPECT_EQ(mLayer.roughnessRMS(3), 0.0);
}

TEST_F(MultiLayerTest, Clone)
{
    set_four();

    Sample* mLayerClone = mLayer.clone();

    // check properties
    EXPECT_EQ(size_t(4), mLayerClone->numberOfLayers());

    // check layer thickness
    EXPECT_EQ(topLayer.thickness(), mLayerClone->layer(0)->thickness());
    EXPECT_EQ(layer1.thickness(), mLayerClone->layer(1)->thickness());
    EXPECT_EQ(layer2.thickness(), mLayerClone->layer(2)->thickness());
    EXPECT_EQ(substrate.thickness(), mLayerClone->layer(3)->thickness());

    // check interfaces
    const Roughness* roughness0 = mLayerClone->layer(1)->roughness();
    EXPECT_TRUE(nullptr != roughness0);
    EXPECT_EQ(mLayerClone->roughnessRMS(1), 0.0);
    EXPECT_TRUE(nullptr == roughness0->crosscorrelationModel());

    const Roughness* roughness1 = mLayerClone->layer(2)->roughness();
    EXPECT_TRUE(nullptr != roughness1);
    EXPECT_EQ(mLayerClone->roughnessRMS(2), 0.0);
    EXPECT_TRUE(nullptr == roughness1->crosscorrelationModel());

    const Roughness* roughness2 = mLayerClone->layer(3)->roughness();
    EXPECT_TRUE(nullptr != roughness2);
    EXPECT_EQ(mLayerClone->roughnessRMS(3), 0.0);
    EXPECT_TRUE(nullptr == roughness2->crosscorrelationModel());

    delete mLayerClone;
}

TEST_F(MultiLayerTest, WithRoughness)
{
    SelfAffineFractalModel autocorrelation(1.1, .3, 0.1, 1e100);
    ErfTransient transient;
    Roughness lr(&autocorrelation, &transient);

    mLayer.addLayer(topLayer);
    mLayer.addLayer(Layer(*layer1.material(), layer1.thickness(), &lr));
    mLayer.addLayer(substrate);

    const Roughness* roughness0 = mLayer.layer(1)->roughness();
    const Roughness* roughness1 = mLayer.layer(2)->roughness();

    EXPECT_TRUE(roughness0);
    auto* roughness0_AC =
        dynamic_cast<const SelfAffineFractalModel*>(roughness0->autocorrelationModel());
    EXPECT_TRUE(roughness0_AC);

    EXPECT_EQ(1.1, mLayer.roughnessRMS(1));
    EXPECT_EQ(.3, roughness0_AC->hurst());
    EXPECT_EQ(0.1, roughness0_AC->lateralCorrLength());

    EXPECT_TRUE(roughness1);
    EXPECT_EQ(mLayer.roughnessRMS(2), 0.0);
}

TEST_F(MultiLayerTest, CloneWithRoughness)
{
    ErfTransient transient;

    SelfAffineFractalModel autocorrelation1(2.1, .3, 12.1, 1e100);
    Roughness lr1(&autocorrelation1, &transient);
    SelfAffineFractalModel autocorrelation2(1.1, .3, 0.1, 1e100);
    Roughness lr2(&autocorrelation2, &transient);

    auto magnetization = R3{0., 1e8, 0.};
    auto magneticLayer =
        Layer(RefractiveMaterial("iron", 2e-5, 8e-5, magnetization), 20 * Units::nm);

    mLayer.addLayer(topLayer);
    mLayer.addLayer(Layer(*magneticLayer.material(), magneticLayer.thickness(), &lr1));
    mLayer.addLayer(Layer(*substrate.material(), substrate.thickness(), &lr2));

    Sample* mLayerClone = mLayer.clone();

    const Roughness* roughness1 = mLayerClone->layer(1)->roughness();
    const Roughness* roughness2 = mLayerClone->layer(2)->roughness();

    EXPECT_TRUE(roughness1);
    EXPECT_TRUE(roughness2);

    auto* roughness1_AC =
        dynamic_cast<const SelfAffineFractalModel*>(roughness1->autocorrelationModel());
    EXPECT_TRUE(roughness1_AC);

    EXPECT_EQ(2.1, mLayerClone->roughnessRMS(1));
    EXPECT_EQ(.3, roughness1_AC->hurst());
    EXPECT_EQ(12.1, roughness1_AC->lateralCorrLength());

    auto* roughness2_AC =
        dynamic_cast<const SelfAffineFractalModel*>(roughness2->autocorrelationModel());
    EXPECT_TRUE(roughness2_AC);

    EXPECT_EQ(1.1, mLayerClone->roughnessRMS(2));
    EXPECT_EQ(.3, roughness2_AC->hurst());
    EXPECT_EQ(0.1, roughness2_AC->lateralCorrLength());

    EXPECT_EQ(mLayerClone->layer(1)->material()->isMagneticMaterial(), true);
    EXPECT_EQ(mLayerClone->layer(1)->material()->magnetization(), magnetization);

    delete mLayerClone;
}

TEST_F(MultiLayerTest, MultiLayerComposite)
{
    Sample mLayer;
    R3 magnetic_field(0.0, 0.0, 0.0);
    Material magMaterial0 = RefractiveMaterial("MagMat0", 6e-4, 2e-8, magnetic_field);
    Material magMaterial1 = RefractiveMaterial("MagMat1", -5.6, 10, magnetic_field);

    Layer layer1(iron, 10 * Units::nm);
    Layer layer2(magMaterial0, 20 * Units::nm);
    Layer layer3(magMaterial1, 30 * Units::nm);
    Layer layer4(stone, 40 * Units::nm);

    mLayer.addLayer(topLayer);
    mLayer.addLayer(layer1);
    mLayer.addLayer(layer2);
    mLayer.addLayer(layer3);
    mLayer.addLayer(layer4);

    std::vector<const Layer*> layer_buffer;
    int counter(0);

    std::vector<const INode*> grandChildren = mLayer.nodeChildren();
    EXPECT_EQ(grandChildren.size(), 5);
    for (const auto* sample : grandChildren) {
        if (counter % 2 == 0) {
            const auto* layer = dynamic_cast<const Layer*>(sample);
            EXPECT_TRUE(nullptr != layer);
            layer_buffer.push_back(layer);
        }
        counter++;
    }
    EXPECT_EQ(size_t(3), layer_buffer.size());
    for (size_t i = 0; i < layer_buffer.size(); ++i)
        EXPECT_EQ(double(i * 20), layer_buffer[i]->thickness());
}