1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
#!/usr/bin/env python3
"""
2D paracrystal
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm
def get_sample():
"""
A sample with cylinders on a substrate, forming a 2D paracrystal
"""
# Materials
material_particle = ba.RefractiveMaterial("Particle", 0.0006, 2e-08)
material_substrate = ba.RefractiveMaterial("Substrate", 6e-06, 2e-08)
vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
# Form factors
ff = ba.Cylinder(4*nm, 5*nm)
# Particles
particle = ba.Particle(material_particle, ff)
# 2D lattices
lattice = ba.BasicLattice2D(10*nm, 10*nm, 90*deg, 0)
# Interference functions
iff = ba.Interference2DParacrystal(lattice, 0, 20000*nm, 20000*nm)
iff.setIntegrationOverXi(True)
profile_1 = ba.Profile2DCauchy(1*nm, 1*nm, 0)
profile_2 = ba.Profile2DCauchy(1*nm, 1*nm, 0)
iff.setProbabilityDistributions(profile_1, profile_2)
# Particle layouts
layout = ba.ParticleLayout()
layout.addParticle(particle)
layout.setInterference(iff)
layout.setTotalParticleSurfaceDensity(0.01)
# Layers
layer_1 = ba.Layer(vacuum)
layer_1.addLayout(layout)
layer_2 = ba.Layer(material_substrate)
# Sample
sample = ba.Sample()
sample.addLayer(layer_1)
sample.addLayer(layer_2)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
n = 200
detector = ba.SphericalDetector(n, -2*deg, 2*deg, n, 0, 2*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
plotargs = bp.parse_commandline()
bp.plot_datafield(result, **plotargs)
bp.export(**plotargs)
|