File: Interference2DParacrystal.py

package info (click to toggle)
bornagain 23.0-4
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,936 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (68 lines) | stat: -rwxr-xr-x 1,801 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#!/usr/bin/env python3
"""
2D paracrystal
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm


def get_sample():
    """
    A sample with cylinders on a substrate, forming a 2D paracrystal
    """

    # Materials
    material_particle = ba.RefractiveMaterial("Particle", 0.0006, 2e-08)
    material_substrate = ba.RefractiveMaterial("Substrate", 6e-06, 2e-08)
    vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)

    # Form factors
    ff = ba.Cylinder(4*nm, 5*nm)

    # Particles
    particle = ba.Particle(material_particle, ff)

    # 2D lattices
    lattice = ba.BasicLattice2D(10*nm, 10*nm, 90*deg, 0)

    # Interference functions
    iff = ba.Interference2DParacrystal(lattice, 0, 20000*nm, 20000*nm)
    iff.setIntegrationOverXi(True)
    profile_1 = ba.Profile2DCauchy(1*nm, 1*nm, 0)
    profile_2 = ba.Profile2DCauchy(1*nm, 1*nm, 0)
    iff.setProbabilityDistributions(profile_1, profile_2)

    # Particle layouts
    layout = ba.ParticleLayout()
    layout.addParticle(particle)
    layout.setInterference(iff)
    layout.setTotalParticleSurfaceDensity(0.01)

    # Layers
    layer_1 = ba.Layer(vacuum)
    layer_1.addLayout(layout)
    layer_2 = ba.Layer(material_substrate)

    # Sample
    sample = ba.Sample()
    sample.addLayer(layer_1)
    sample.addLayer(layer_2)

    return sample


def get_simulation(sample):
    beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
    n = 200
    detector = ba.SphericalDetector(n, -2*deg, 2*deg, n, 0, 2*deg)
    simulation = ba.ScatteringSimulation(beam, sample, detector)
    return simulation


if __name__ == '__main__':
    sample = get_sample()
    simulation = get_simulation(sample)
    result = simulation.simulate()
    plotargs = bp.parse_commandline()
    bp.plot_datafield(result, **plotargs)
    bp.export(**plotargs)