1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
|
#!/usr/bin/env python3
"""
Same sample as in Offspec1, but simulated as GISAS, i.e. without integration in phi
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm
from bornagain.numpyutil import Arrayf64Converter as dac
def get_sample():
# Materials
material_particle = ba.RefractiveMaterial("Particle", 0.0006, 2e-08)
material_substrate = ba.RefractiveMaterial("Substrate", 6e-06, 2e-08)
vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
# Particles
ff = ba.Box(1000*nm, 20*nm, 10*nm)
particle = ba.Particle(material_particle, ff)
particle_rotation = ba.RotationZ(90*deg)
particle.rotate(particle_rotation)
# Interference functions
iff = ba.Interference1DLattice(100*nm, 0)
profile = ba.Profile1DCauchy(1e6*nm)
iff.setDecayFunction(profile)
# Particle layouts
layout = ba.ParticleLayout()
layout.addParticle(particle)
# layout.setInterference(iff)
layout.setTotalParticleSurfaceDensity(0.01)
# Layers
layer_1 = ba.Layer(vacuum)
layer_1.addLayout(layout)
layer_2 = ba.Layer(material_substrate)
# Sample
sample = ba.Sample()
sample.addLayer(layer_1)
sample.addLayer(layer_2)
return sample
def simulate(sample):
beam = ba.Beam(1e9, 0.1 * nm, 1.0 * deg)
detector = ba.SphericalDetector(501, -2*deg, 2*deg, 1, 0.94*deg, 1.06*deg)
sim = ba.ScatteringSimulation(beam, sample, detector)
return sim.simulate().flat()
if __name__ == '__main__':
sample = get_sample()
result = simulate(sample)
sum = dac.asNpArray(result.dataArray()).sum()
print(f'sum = {sum/1e9}')
<%- if test_mode -%>
from bornagain import ba_check
ba_check.persistence_test(result)
<%- elsif figure_mode -%>
plotargs = bp.parse_commandline()
bp.plot_datafield(result, **plotargs)
bp.export(**plotargs)
<%- else -%>
bp.plot_datafield(result)
bp.plt.show()
<%- end -%>
|