1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
|
#!/usr/bin/env python3
"""
Basic GISAS from oriented boxes, with different detector resolutions.
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm
def get_sample():
"""
Dilute random assembly of oriented boxes on a substrate.
"""
from bornagain import std_samples
mat = ba.RefractiveMaterial("Particle", 6e-4, 2e-08)
ff = ba.Box(30*nm, 30*nm, 30*nm)
particle = ba.Particle(mat, ff)
return std_samples.substrate_plus_particle(particle)
if __name__ == '__main__':
sample = get_sample()
# Beam
wavelength = 0.1*nm
alpha_i = 0.2*deg
beam = ba.Beam(1, wavelength, alpha_i)
# Detector
nx = <%= test_mode ? 7 : 142 %>
ny = <%= test_mode ? 11 : 200 %>
detector = ba.SphericalDetector(nx, -1.5*deg, 1.5*deg, ny, 0, 3*deg)
results = []
simulation = ba.ScatteringSimulation(beam, sample, detector)
result = simulation.simulate()
result.setTitle("no resolution")
results.append(result)
detector.setResolutionFunction(
ba.ResolutionFunction2DGaussian(0.2*deg, 0.01*deg))
simulation = ba.ScatteringSimulation(beam, sample, detector)
result = simulation.simulate()
result.setTitle("resolution 0.2deg, 0.01deg")
results.append(result)
detector.setResolutionFunction(
ba.ResolutionFunction2DGaussian(0.2*deg, 0.2*deg))
simulation = ba.ScatteringSimulation(beam, sample, detector)
result = simulation.simulate()
result.setTitle("resolution 0.2deg, 0.2deg")
results.append(result)
<%- if test_mode -%>
from bornagain import ba_check
ba_check.persistence_test(results)
<%- elsif figure_mode -%>
plotargs = bp.parse_commandline()
bp.plot_to_row(results, **plotargs)
bp.export(**plotargs)
<%- else -%>
bp.plot_to_row(results)
bp.plt.show()
<%- end -%>
|