File: IDetector.cpp

package info (click to toggle)
bornagain 23.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,948 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (233 lines) | stat: -rw-r--r-- 6,398 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
//  ************************************************************************************************
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Device/Detector/IDetector.cpp
//! @brief     Implements common detector interface.
//!
//! @homepage  http://www.bornagainproject.org
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors   Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
//  ************************************************************************************************

#include "Device/Detector/IDetector.h"
#include "Base/Axis/Scale.h"
#include "Base/Util/Assert.h"
#include "Device/Mask/InfinitePlane.h"
#include "Device/Mask/MaskStack.h"
#include "Device/Resolution/ConvolutionDetectorResolution.h"
#include <iostream>

//... struct RoiOfAxis

//! Keeps RegionOfInterest (ROI) data of one axis.
struct RoiOfAxis {
    double lower;
    double upper;

    // Precomputed values, to speed up repeated calculations.
    size_t lowerIndex;   //!< index corresponding to 'lower'
    size_t upperIndex;   //!< index corresponding to 'upper'
    size_t roiSize;      //!< number of bins on axis of ROI
    size_t detectorSize; //!< number of bins on axis of detector

    RoiOfAxis(const Scale& axis, double lower, double upper);

    std::pair<double, double> bounds() const;
};

RoiOfAxis::RoiOfAxis(const Scale& axis, double _lower, double _upper)
    : lower(_lower)
    , upper(_upper)
{
    ASSERT(lower < upper);
    detectorSize = axis.size();
    lowerIndex = axis.closestIndex(lower);
    upperIndex = axis.closestIndex(upper);
    // suppress tiny bins that are most likely due to floating-point inaccuracy
    if (axis.bin(lowerIndex).binSize() < 1e-12 * axis.span() / axis.size()) {
        ASSERT(lowerIndex < axis.size() - 1);
        ++lowerIndex;
    }
    if (axis.bin(upperIndex).binSize() < 1e-12 * axis.span() / axis.size()) {
        ASSERT(upperIndex > 0);
        --upperIndex;
    }
    roiSize = upperIndex - lowerIndex + 1;
}

std::pair<double, double> RoiOfAxis::bounds() const
{
    return {lower, upper};
}


//... class IDetector

IDetector::IDetector(Frame* frame)
    : m_frame(frame)
    , m_mask(new MaskStack)
{
    ASSERT(frame);
    ASSERT(frame->rank() == 2);
}

IDetector::IDetector(const IDetector& other)
    : INode(other)
    , m_explicitROI(other.m_explicitROI)
    , m_frame(other.m_frame->clone())
    , m_pol_analyzer(other.m_pol_analyzer)
    , m_resolution(other.m_resolution ? other.m_resolution->clone() : nullptr)
    , m_mask(other.m_mask->clone())
{
}

IDetector::~IDetector() = default;

const Frame& IDetector::frame() const
{
    ASSERT(m_frame);
    return *m_frame;
}

const Scale& IDetector::axis(size_t i) const
{
    ASSERT(i < 2);
    return m_frame->axis(i);
}

size_t IDetector::axisBinIndex(size_t i, size_t k_axis) const
{
    return m_frame->projectedIndex(i, k_axis);
}

size_t IDetector::totalSize() const
{
    return m_frame->axis(0).size() * m_frame->axis(1).size();
}

bool IDetector::hasExplicitRegionOfInterest() const
{
    return m_explicitROI.size() == 2;
}

size_t IDetector::sizeOfRegionOfInterest() const
{
    if (hasExplicitRegionOfInterest())
        return m_explicitROI[0].roiSize * m_explicitROI[1].roiSize;
    return totalSize();
}

Frame IDetector::clippedFrame() const
{
    ASSERT(m_frame);
    ASSERT(m_frame->rank() == 2);
    return {new Scale(m_frame->axis(0).clipped(regionOfInterestBounds(0))),
            new Scale(m_frame->axis(1).clipped(regionOfInterestBounds(1)))};
}

void IDetector::setAnalyzer(const R3& Bloch_vector, double mean_transmission)
{
    m_pol_analyzer = PolFilter(Bloch_vector, mean_transmission);
}

void IDetector::setDetectorResolution(const IDetectorResolution& detector_resolution)
{
    m_resolution.reset(detector_resolution.clone());
}

// TODO: pass dimension-independent argument to this function
void IDetector::setResolutionFunction(const IResolutionFunction2D& resFunc)
{
    ConvolutionDetectorResolution convFunc(resFunc);
    setDetectorResolution(convFunc);
}

void IDetector::applyDetectorResolution(Datafield* df) const
{
    ASSERT(df);

    if (!m_resolution)
        return;
    m_resolution->execDetectorResolution(df);

    if (detectorMask())
        // set amplitude in masked areas to zero
        for (size_t i = 0; i < totalSize(); ++i)
            if (detectorMask()->isMasked(i, frame()))
                df->setAt(i, 0.);
}

Datafield IDetector::createDetectorMap() const
{
    std::vector<const Scale*> axes;
    for (size_t i = 0; i < 2; ++i)
        axes.push_back(new Scale(axis(i).clipped(regionOfInterestBounds(i))));
    return {Frame(axes)};
}

std::pair<double, double> IDetector::regionOfInterestBounds(size_t iAxis) const
{
    ASSERT(iAxis < 2);
    if (iAxis < m_explicitROI.size())
        return m_explicitROI[iAxis].bounds();
    return m_frame->axis(iAxis).bounds();
}

std::vector<const INode*> IDetector::nodeChildren() const
{
    return std::vector<const INode*>() << &m_pol_analyzer << m_resolution.get();
}

size_t IDetector::roiToFullIndex(const size_t i) const
{
    if (m_explicitROI.size() != 2)
        return i;

    const auto& x = m_explicitROI[0];
    const auto& y = m_explicitROI[1];

    const size_t globalIndex0 = y.lowerIndex * x.detectorSize + x.lowerIndex;
    const size_t xcoord = i % x.roiSize;
    const size_t ycoord = i / x.roiSize;
    return globalIndex0 + xcoord + ycoord * x.detectorSize;
}

void IDetector::setRegionOfInterest(double xlow, double ylow, double xup, double yup)
{
    m_explicitROI.clear();
    m_explicitROI.emplace_back(axis(0), xlow, xup);
    m_explicitROI.emplace_back(axis(1), ylow, yup);
}

std::vector<size_t> IDetector::activeIndices() const
{
    std::vector<size_t> result;
    for (size_t i = 0; i < sizeOfRegionOfInterest(); ++i)
        if (!detectorMask() || !detectorMask()->isMasked(roiToFullIndex(i), frame()))
            result.push_back(i);

    return result;
}

void IDetector::addMask(const IShape2D& shape, bool mask_value)
{
    m_mask->pushMask(shape, mask_value);
}

void IDetector::maskAll()
{
    addMask(InfinitePlane(), true);
}

const MaskStack* IDetector::detectorMask() const
{
    return m_mask.get();
}

size_t IDetector::getGlobalIndex(size_t x, size_t y) const
{
    return y * axis(0).size() + x;
}