1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Img3D/Build/PositionBuilders.cpp
//! @brief Implements subclasses of IPositionBuilder.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#include "Img3D/Build/PositionBuilders.h"
#include "Base/Math/Functions.h"
#include "Img3D/Build/ParacrystalLatticePositions.h"
#include "Sample/Aggregate/Interferences.h"
#include <random>
namespace {
double2d_t Generate2DLatticePoints(double l1, double l2, double alpha, double xi, unsigned n1,
unsigned n2)
{
double2d_t lattice_positions;
std::vector<double> position;
const unsigned nn1 = std::max(1u, n1);
const unsigned nn2 = std::max(1u, n2);
const int n1m = -static_cast<int>((nn1 - 1) / 2);
const int n1M = static_cast<int>(nn1 / 2);
const int n2m = -static_cast<int>((nn2 - 1) / 2);
const int n2M = static_cast<int>(nn2 / 2);
for (int i = n1m; i <= n1M; ++i) {
for (int j = n2m; j <= n2M; ++j) {
// For calculating lattice position vector v, we use: v = i*l1 + j*l2
// where l1 and l2 are the lattice vectors,
position.push_back(i * l1 * std::cos(xi)
+ j * l2 * std::cos(alpha + xi)); // x coordinate
position.push_back(i * l1 * std::sin(xi)
+ j * l2 * std::sin(alpha + xi)); // y coordinate
lattice_positions.push_back(position);
position.clear();
}
}
return lattice_positions;
}
} // namespace
// ************************************************************************************************
// class IPositionBuilder
// ************************************************************************************************
IPositionBuilder::~IPositionBuilder() = default;
double2d_t IPositionBuilder::generatePositions(double layer_size, double density, int seed) const
{
double2d_t positions = generatePositionsImpl(layer_size, density, Math::GenerateNextSeed(seed));
const double pos_var = positionVariance();
if (pos_var > 0.0) {
// random generator and distribution
std::random_device rd; // Will be used to obtain a seed for the random number engine
std::mt19937 gen(seed < 0 ? rd()
: seed); // Standard mersenne_twister_engine seeded with rd()
std::normal_distribution<double> dis(0.0, std::sqrt(pos_var));
for (auto& position : positions) {
for (double& coordinate : position)
coordinate += dis(gen);
}
}
return positions;
}
// ************************************************************************************************
// class RandomPositionBuilder
// ************************************************************************************************
RandomPositionBuilder::RandomPositionBuilder() = default;
RandomPositionBuilder::~RandomPositionBuilder() = default;
double2d_t RandomPositionBuilder::generatePositionsImpl(double layer_size, double density,
int seed) const
{
double2d_t lattice_positions;
std::vector<double> position;
// to compute total number of particles we use the total particle density
// and multiply by the area of the layer
int n_particles = static_cast<int>(density * (2 * layer_size) * (2 * layer_size));
// random generator and distribution
std::random_device rd; // Will be used to obtain a seed for the random number engine
std::mt19937 gen(seed < 0 ? rd() : seed); // Standard mersenne_twister_engine seeded with rd()
std::uniform_real_distribution<double> dis(0.0, 1.0);
for (int i = 1; i <= n_particles; ++i) {
// generate random x and y coordinates
position.push_back(dis(gen) * 2 * layer_size - layer_size); // x
position.push_back(dis(gen) * 2 * layer_size - layer_size); // y
lattice_positions.push_back(position);
position.clear();
}
return lattice_positions;
}
double RandomPositionBuilder::positionVariance() const
{
return 0.0; // no need for extra randomness here
}
// ************************************************************************************************
// class Lattice1DPositionBuilder
// ************************************************************************************************
Lattice1DPositionBuilder::Lattice1DPositionBuilder(const Interference1DLattice* p_iff)
: m_iff(p_iff->clone())
{
}
Lattice1DPositionBuilder::~Lattice1DPositionBuilder() = default;
double2d_t Lattice1DPositionBuilder::generatePositionsImpl(double layer_size, double, int) const
{
const double length = m_iff->length();
const double xi = m_iff->xi();
// Take the maximum possible integer multiple of the lattice vector required
// for populating particles correctly within the 3D model's boundaries
unsigned n1 =
length == 0.0 ? 2 : static_cast<unsigned>(2.0 * layer_size * std::sqrt(2.0) / length);
return Generate2DLatticePoints(length, 0.0, 0.0, xi, n1, 1u);
}
double Lattice1DPositionBuilder::positionVariance() const
{
return m_iff->positionVariance();
}
// ************************************************************************************************
// class Lattice2DPositionBuilder
// ************************************************************************************************
Lattice2DPositionBuilder::Lattice2DPositionBuilder(const Interference2DLattice* p_iff)
: m_iff(p_iff->clone())
{
}
Lattice2DPositionBuilder::~Lattice2DPositionBuilder() = default;
double2d_t Lattice2DPositionBuilder::generatePositionsImpl(double layer_size, double, int) const
{
const Lattice2D& lattice = m_iff->lattice();
const double l1 = lattice.length1();
const double l2 = lattice.length2();
const double alpha = lattice.latticeAngle();
const double xi = lattice.rotationAngle();
// Estimate the limits n1 and n2 of the maximum integer multiples of the lattice vectors
// required for populating particles correctly within the 3D model's boundaries
unsigned n1, n2;
const double sina = std::abs(std::sin(alpha));
if (sina <= 1e-4) {
n1 = l1 == 0.0 ? 2 : static_cast<unsigned>(2.0 * layer_size * std::sqrt(2.0) / l1);
n2 = l2 == 0.0 ? 2 : static_cast<unsigned>(2.0 * layer_size * std::sqrt(2.0) / l2);
} else {
n1 = l1 == 0.0 ? 2 : static_cast<unsigned>(2.0 * layer_size * std::sqrt(2.0) / l1 / sina);
n2 = l2 == 0.0 ? 2 : static_cast<unsigned>(2.0 * layer_size * std::sqrt(2.0) / l2 / sina);
}
return Generate2DLatticePoints(l1, l2, alpha, xi, n1, n2);
}
double Lattice2DPositionBuilder::positionVariance() const
{
return m_iff->positionVariance();
}
// ************************************************************************************************
// class Paracrystal2DPositionBuilder
// ************************************************************************************************
Paracrystal2DPositionBuilder::Paracrystal2DPositionBuilder(const Interference2DParacrystal* p_iff)
: m_iff(p_iff->clone())
{
}
Paracrystal2DPositionBuilder::~Paracrystal2DPositionBuilder() = default;
double2d_t Paracrystal2DPositionBuilder::generatePositionsImpl(double layer_size, double,
int seed) const
{
return Paracrystal::latticePositions(m_iff.get(), layer_size, seed);
}
double Paracrystal2DPositionBuilder::positionVariance() const
{
return m_iff->positionVariance();
}
// ************************************************************************************************
// class Finite2DLatticePositionBuilder
// ************************************************************************************************
Finite2DLatticePositionBuilder::Finite2DLatticePositionBuilder(
const InterferenceFinite2DLattice* p_iff)
: m_iff(p_iff->clone())
{
}
Finite2DLatticePositionBuilder::~Finite2DLatticePositionBuilder() = default;
double2d_t Finite2DLatticePositionBuilder::generatePositionsImpl(double layer_size, double,
int) const
{
const auto& lattice = m_iff->lattice();
const double l1 = lattice.length1();
const double l2 = lattice.length2();
const double alpha = lattice.latticeAngle();
const double xi = lattice.rotationAngle();
unsigned n1, n2;
const double sina = std::abs(std::sin(alpha));
if (sina <= 1e-4) {
n1 = l1 == 0.0 ? 2 : static_cast<unsigned>(2.0 * layer_size * std::sqrt(2.0) / l1);
n2 = l2 == 0.0 ? 2 : static_cast<unsigned>(2.0 * layer_size * std::sqrt(2.0) / l2);
} else {
n1 = l1 == 0.0 ? 2 : static_cast<unsigned>(2.0 * layer_size * std::sqrt(2.0) / l1 / sina);
n2 = l2 == 0.0 ? 2 : static_cast<unsigned>(2.0 * layer_size * std::sqrt(2.0) / l2 / sina);
}
n1 = std::min(n1, m_iff->numberUnitCells1());
n2 = std::min(n2, m_iff->numberUnitCells2());
return Generate2DLatticePoints(l1, l2, alpha, xi, n1, n2);
}
double Finite2DLatticePositionBuilder::positionVariance() const
{
return m_iff->positionVariance();
}
// ************************************************************************************************
// class RadialParacrystalPositionBuilder
// ************************************************************************************************
RadialParacrystalPositionBuilder::RadialParacrystalPositionBuilder(
const InterferenceRadialParacrystal* p_iff)
: m_iff(p_iff->clone())
{
}
RadialParacrystalPositionBuilder::~RadialParacrystalPositionBuilder() = default;
double2d_t RadialParacrystalPositionBuilder::generatePositionsImpl(double layer_size, double,
int seed) const
{
double2d_t lattice_positions;
const double distance = m_iff->peakDistance();
// Estimate the limit n of the integer multiple i of the peakDistance required
// for populating particles correctly within the 3D model's boundaries
const int n = distance <= 0.0 ? 1 : static_cast<int>(layer_size * std::sqrt(2.0) / distance);
lattice_positions.resize(2 * n + 1);
for (auto& it : lattice_positions)
it.resize(2);
lattice_positions[0][0] = 0.0; // x coordinate of reference particle - at the origin
lattice_positions[0][1] = 0.0; // y coordinate of reference particle - at the origin
int upd_seed = Math::GenerateNextSeed(seed);
for (int i = 1; i <= n; ++i) {
// update seeds for each position
upd_seed = Math::GenerateNextSeed(upd_seed);
int upd_seed_2 = Math::GenerateNextSeed(upd_seed);
// positions of particles located along +x (store at odd index)
const unsigned i_left = static_cast<unsigned>(std::max(0, 2 * i - 3));
double offset = m_iff->randomSample(upd_seed);
lattice_positions[2 * i - 1][0] = lattice_positions[i_left][0] + distance + offset;
lattice_positions[2 * i - 1][1] = 0.0;
// positions of particles located along -x (store at even index)
offset = m_iff->randomSample(upd_seed_2);
lattice_positions[2 * i][0] = lattice_positions[2 * (i - 1)][0] - distance + offset;
lattice_positions[2 * i][1] = 0.0;
}
return lattice_positions;
}
double RadialParacrystalPositionBuilder::positionVariance() const
{
return m_iff->positionVariance();
}
|