1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
// ************************************************************************************************
//
// BornAgain: simulate and fit reflection and scattering
//
//! @file Resample/Slice/Slice.h
//! @brief Defines class Slice.
//!
//! @homepage http://www.bornagainproject.org
//! @license GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2018
//! @authors Scientific Computing Group at MLZ (see CITATION, AUTHORS)
//
// ************************************************************************************************
#ifdef SWIG
#error no need to expose this header to Swig
#endif // SWIG
#ifndef BORNAGAIN_RESAMPLE_SLICE_SLICE_H
#define BORNAGAIN_RESAMPLE_SLICE_SLICE_H
#include "Resample/Slice/ZLimits.h"
#include "Sample/Material/Material.h"
#include <memory>
class Roughness;
//! Data structure containing the data of a single slice, for calculating the Fresnel coefficients.
class Slice {
public:
Slice(const ZLimits& zRange, const Material& material, const R3& B_field,
const Roughness* roughness, double rms);
~Slice();
void setMaterial(const Material& material) { m_material = material; }
const Material& material() const { return m_material; }
double low() const;
double hig() const;
double higOr0() const;
const ZLimits& span() const { return m_z_range; }
double thicknessOr0() const;
const Roughness* topRoughness() const { return m_top_roughness; }
double topRMS() const { return m_top_rms; }
//! Return the potential term that is used in the one-dimensional Fresnel calculations
complex_t scalarReducedPotential(R3 k, double n_ref) const;
//! Return the potential term that is used in the one-dimensional Fresnel calculations
//! in the presence of magnetization
SpinMatrix polarizedReducedPotential(R3 k, double n_ref) const;
//! Initializes the magnetic B field from a given ambient field strength H
void initBField(R3 h_field, double h_z);
R3 bField() const { return m_B_field; }
void invertBField();
private:
const ZLimits m_z_range;
Material m_material;
R3 m_B_field; //!< cached value of magnetic induction
const Roughness* const m_top_roughness;
double m_top_rms;
};
#endif // BORNAGAIN_RESAMPLE_SLICE_SLICE_H
|