File: libBornAgainSample.i

package info (click to toggle)
bornagain 23.0-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 103,948 kB
  • sloc: cpp: 423,131; python: 40,997; javascript: 11,167; awk: 630; sh: 318; ruby: 173; xml: 130; makefile: 51; ansic: 24
file content (359 lines) | stat: -rw-r--r-- 12,570 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
// ************************************************************************** //
//
//  BornAgain: simulate and fit reflection and scattering
//
//! @file      Wrap/Swig/libBornAgainSample.i
//! @brief     SWIG interface file for libBornAgainSample
//!
//!            Configuration is done in Sample/CMakeLists.txt
//!
//! @homepage  http://apps.jcns.fz-juelich.de/BornAgain
//! @license   GNU General Public License v3 or higher (see COPYING)
//! @copyright Forschungszentrum Jülich GmbH 2013
//! @authors   Scientific Computing Group at MLZ Garching
//
// ************************************************************************** //

%module(moduleimport="import $module") "libBornAgainSample"

%include "commons.i"

%{
#include "Base/Axis/Frame.h"
#include "Base/Type/Span.h"
#include "Base/Vector/RotMatrix.h"
#include "Param/Distrib/ParameterDistribution.h"
#include "Sample/Aggregate/Interference1DLattice.h"
#include "Sample/Aggregate/Interference2DLattice.h"
#include "Sample/Aggregate/Interference2DParacrystal.h"
#include "Sample/Aggregate/Interference2DSuperLattice.h"
#include "Sample/Aggregate/InterferenceFinite2DLattice.h"
#include "Sample/Aggregate/InterferenceHardDisk.h"
#include "Sample/Aggregate/InterferenceNone.h"
#include "Sample/Aggregate/InterferenceRadialParacrystal.h"
#include "Sample/Aggregate/ParticleLayout.h"
#include "Sample/Correlation/IPeakShape.h"
#include "Sample/HardParticle/HardParticles.h"
#include "Sample/Interface/Roughness.h"
#include "Sample/Interface/RoughnessMap.h"
#include "Sample/Lattice/BakeLattice.h"
#include "Sample/Lattice/ISelectionRule.h"
#include "Sample/Lattice/Lattice3D.h"
#include "Sample/Material/MaterialBySLDImpl.h"
#include "Sample/Material/MaterialFactoryFuncs.h"
#include "Sample/Material/RefractiveMaterialImpl.h"
#include "Sample/Multilayer/Layer.h"
#include "Sample/Multilayer/LayerStack.h"
#include "Sample/Multilayer/Sample.h"
#include "Sample/Particle/Compound.h"
#include "Sample/Particle/CoreAndShell.h"
#include "Sample/Particle/Crystal.h"
#include "Sample/Particle/Mesocrystal.h"
#include "Sample/Particle/Particle.h"
#include "Sample/Scattering/Rotations.h"
#include "Sample/SoftParticle/SoftParticles.h"
%}

%include "fromBase.i"
%include "fromParam.i"

%include "Sample/Material/Material.h"
%include "Sample/Material/MaterialFactoryFuncs.h"
%include "Sample/Material/IMaterialImpl.h"
%include "Sample/Material/RefractiveMaterialImpl.h"
%include "Sample/Material/MaterialBySLDImpl.h"

%include "Sample/Scattering/ISampleNode.h"
%include "Sample/Particle/IFormfactor.h"
%include "Sample/Scattering/Rotations.h"

%include "Sample/Particle/Crystal.h"
%include "Sample/Particle/IParticle.h"
%include "Sample/Particle/Mesocrystal.h"
%include "Sample/Particle/Compound.h"
%include "Sample/Particle/CoreAndShell.h"

%include "Sample/Correlation/Profiles1D.h"
%include "Sample/Correlation/Profiles2D.h"
%include "Sample/Correlation/IPeakShape.h"

%include "Sample/Aggregate/IInterference.h"
%include "Sample/Aggregate/Interference1DLattice.h"
%include "Sample/Aggregate/Interference2DLattice.h"
%include "Sample/Aggregate/Interference2DParacrystal.h"
%include "Sample/Aggregate/Interference2DSuperLattice.h"
%include "Sample/Aggregate/InterferenceFinite2DLattice.h"
%include "Sample/Aggregate/InterferenceHardDisk.h"
%include "Sample/Aggregate/InterferenceNone.h"
%include "Sample/Aggregate/InterferenceRadialParacrystal.h"
%include "Sample/Aggregate/ParticleLayout.h"

%include "Sample/Interface/Roughness.h"
%include "Sample/Interface/RoughnessMap.h"

%include "Sample/Multilayer/Layer.h"
%include "Sample/Multilayer/LayerStack.h"
%include "Sample/Multilayer/Sample.h"

%include "Sample/Interface/AutocorrelationModels.h"
%include "Sample/Interface/TransientModels.h"
%include "Sample/Interface/CrosscorrelationModels.h"


%include "Sample/HardParticle/IFormfactorPolyhedron.h"
%include "Sample/HardParticle/IFormfactorPrism.h"
%include "Sample/HardParticle/IProfileRipple.h"

%include "Sample/HardParticle/Polyhedra.h"

%include "Sample/HardParticle/Cone.h"
%include "Sample/HardParticle/Cylinder.h"
%include "Sample/HardParticle/EllipsoidalCylinder.h"
%include "Sample/HardParticle/HemiEllipsoid.h"
%include "Sample/HardParticle/HorizontalCylinder.h"
%include "Sample/HardParticle/Sphere.h"
%include "Sample/HardParticle/SphericalSegment.h"
%include "Sample/HardParticle/Spheroid.h"
%include "Sample/HardParticle/SpheroidalSegment.h"

%include "Sample/HardParticle/Bar.h"
%include "Sample/HardParticle/CosineRipple.h"
%include "Sample/HardParticle/SawtoothRipple.h"

%include "Sample/HardParticle/LongBoxGauss.h"
%include "Sample/HardParticle/LongBoxLorentz.h"

%include "Sample/SoftParticle/Gauss.h"
%include "Sample/SoftParticle/FuzzySphere.h"

%include "Sample/Lattice/ISelectionRule.h"
%include "Sample/Lattice/Lattice3D.h"
%include "Sample/Lattice/Lattice2D.h"
%include "Sample/Lattice/BakeLattice.h"


// defines a function with no arguments and returns a Python Sample object

%ignore BA_SWIG_sampleFromPyObject;
%ignore BA_SWIG_PyFormfactor;

%inline
%{

// creates a C++ Sample instance from Python object which wraps a Sample instance
std::unique_ptr<Sample> BA_SWIG_sampleFromPyObject(void* pSample)
{
    if (!pSample)
        throw std::runtime_error("BA_SWIG_sampleFromPyObject: Sample PyObject is null");

    PyObject* pySample {reinterpret_cast<PyObject*>(pSample)};

    // Construct a C++ object from the Python object.
    // This conversion requires a SWIG-produced Python API.
    swig_type_info* pTypeInfo = SWIG_TypeQuery("Sample*");
    void* argp1 = nullptr;
    const int res = SWIG_ConvertPtr(pySample, &argp1, pTypeInfo, 0);
    if (!SWIG_IsOK(res))
        throw std::runtime_error("BA_SWIG_sampleFromPyObject: "
                                 "PyObject did not yield a Sample instance");

    // clone the Sample instance
    std::unique_ptr<Sample> sample { reinterpret_cast<Sample*>(argp1)->clone() };

    return sample;
}

//========================================

// Wrapper for Python Formfactor class
class BA_SWIG_PyFormfactor: public IFormfactor {
public:
    BA_SWIG_PyFormfactor() = delete;

    BA_SWIG_PyFormfactor(PyObject* pyFormfactor)
    {
        if (!m_isFormfactor(pyFormfactor)) {
            throw std::runtime_error("BA_SWIG_PyFormfactor (SWIG): The given Python object "
                "is not of proper type.");
        }

        m_pyFormfactorObj = pyFormfactor;

        // increase the Python reference count to keep the Python object alive
        Py_INCREF(m_pyFormfactorObj);
    }

    ~BA_SWIG_PyFormfactor() {
        Py_XDECREF(m_pyFormfactorObj);
    }

    double radialExtension() const override {
        throw std::runtime_error("BA_SWIG_PyFormfactor (SWIG): 'radialExtension' method "
                                 "is not defined for the Python formfactor");
    }

    bool contains(const R3&) const override {
        throw std::runtime_error("BA_SWIG_PyFormfactor (SWIG): 'contains' method "
                                 "is not defined for the Python formfactor");
    }

    complex_t formfactor(C3 q) const override {
        return m_pyFormfactor(q);
    }

    Span spanZ(const IRotation* rotation) const override {
        return m_pySpanZ(rotation);
    };

    BA_SWIG_PyFormfactor* clone() const override {
        return new BA_SWIG_PyFormfactor(m_pyFormfactorObj);
    }

    std::string className() const override {
        return "CustomPyFormfactor";
    }

private:

    PyObject* m_pyFormfactorObj = nullptr;

    static bool m_isFormfactor(PyObject* pObj)
        {
        if (!pObj)
            return false;

        const char method_name[] = "formfactor";

        // the Python class is expected to have a 'formfactor' callable method
        if (!PyObject_HasAttrString(pObj, method_name))
            return false;

        PyObject* pMethod = PyObject_GetAttrString(pObj, method_name);

        if (!PyCallable_Check(pMethod)) {
            Py_DECREF(pMethod);
            return false;
        }

        Py_DECREF(pMethod);
        return true;
        }

    complex_t m_pyFormfactor(C3 q) const
        {
        // call a method which takes a single Python object as input
        PyObject* pMethod = PyObject_GetAttrString(m_pyFormfactorObj, "formfactor");

        // make a Python-wrapped C++ instance as the call argument
        // NOTE: PyObject* SWIG_NewPointerObj(void* ptr, swig_type_info* ty, int own)
        // creates a new Python pointer object.
        C3* C3_ptr = &q;
        swig_type_info* pTypeInfo_C3 = SWIG_TypeQuery("C3*");
        PyObject* arg1 = SWIG_NewPointerObj(SWIG_as_voidptr(C3_ptr), pTypeInfo_C3, 0);
        PyObject* pResult = PyObject_CallFunctionObjArgs(pMethod, arg1, NULL);
        Py_DECREF(arg1);
        Py_DECREF(pMethod);

        if (!pResult) {
            PyErr_SetString(PyExc_RuntimeError,
              "m_pyFormfactor (SWIG): Calling Python method 'formfactor' failed");
            return 0;
        }

        complex_t result;

        // check for Python numerical types: complex, float and int
        if(PyComplex_Check(pResult)) {
            result = complex_t{PyComplex_RealAsDouble(pResult),
                               PyComplex_ImagAsDouble(pResult)};
        } else if(PyFloat_Check(pResult)) {
            result = PyFloat_AsDouble(pResult);
        } else if(PyLong_Check(pResult)) {
            result = PyLong_AsDouble(pResult);
        } else {
            Py_DECREF(pResult);
            PyErr_SetString(PyExc_RuntimeError,
              "m_pyFormfactor (SWIG): Calling Python method 'formfactor' did not produce complex, float or int value");
            return 0;
        }

        Py_DECREF(pResult);

        return result;
    }

    Span m_pySpanZ(const IRotation* rotation) const
        {
        // call a method which takes a single Python object as input
        PyObject* pMethod = PyObject_GetAttrString(m_pyFormfactorObj, "spanZ");

        if (!pMethod)
            throw std::runtime_error("m_pySpanZ (SWIG): "
              "Python object has no 'spanZ' method");

        // make a Python-wrapped C++ instance as the call argument
        // NOTE: PyObject* SWIG_NewPointerObj(void* ptr, swig_type_info* ty, int own)
        // creates a new Python pointer object.
        IRotation* IRotation_ptr = const_cast<IRotation*>(rotation);
        swig_type_info* pTypeInfo_IRotation = SWIG_TypeQuery("IRotation*");
        PyObject* arg1 = SWIG_NewPointerObj(SWIG_as_voidptr(IRotation_ptr),
                                            pTypeInfo_IRotation, 0);
        PyObject* pResult = PyObject_CallFunctionObjArgs(pMethod, arg1, NULL);
        Py_DECREF(arg1);
        Py_DECREF(pMethod);

        if (!pResult) {
            throw std::runtime_error("m_pySpanZ (SWIG): "
              "Calling Python method 'spanZ' failed");
        }

        // extract the C++ value from the resulting Python object
        swig_type_info* pTypeInfo_Span = SWIG_TypeQuery("Span*");
        void* Span_ptr = nullptr;
        int res = SWIG_ConvertPtr(pResult, &Span_ptr, pTypeInfo_Span,  0);

        if (!SWIG_IsOK(res))
            throw std::runtime_error("m_pySpanZ (SWIG): "
              "Calling Python 'spanZ' method did not yield a 'Span' instance");

        Span result = *(reinterpret_cast<Span*>(Span_ptr));
        Py_DECREF(pResult);

        return result;
    }
};
%}

%include "Sample/Particle/Particle.h"

%extend Particle {
// new constructor for the Python interface (see <https://stackoverflow.com/a/33585437>)
// NOTE: The extra final argument is unused and meant only to differentiate unambiguously
// the call signature from the main constructor defined in the C++ code.

Particle(const Material& material, PyObject* pyFormfactor, const int)
{
    // wrap the PythonObject and produce a Particle from the wrapped object
    BA_SWIG_PyFormfactor ff_wrapper(pyFormfactor);
    Particle* new_particle = new Particle(material, ff_wrapper);
    return new_particle;
}

};

// extend the Python class
%pythoncode %{

class Particle(Particle):
    def __init__(self, material_, ff_):
        if isinstance(ff_, IFormfactor):
            super().__init__(material_, ff_)
        elif hasattr(ff_, 'formfactor'):
            super().__init__(material_, ff_, 0)
        else:
            raise TypeError("Particle: The given Python object is not a proper Formfactor. "
               "A minimal Formfactor object must have at least a 'formfactor' method "
               "which takes a 'C3' (vector) instance as argument and "
               "returns a complex or float.")

%};