1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
|
#!/usr/bin/env python3
"""
Spheres on two hexagonal close packed layers
"""
import bornagain as ba
from bornagain import ba_plot as bp, deg, nm, R3
def get_sample():
"""
A sample with spheres on a substrate,
forming two hexagonal close packed layers.
"""
# Materials
material_particle = ba.RefractiveMaterial("Particle", 0.0006, 2e-08)
material_substrate = ba.RefractiveMaterial("Substrate", 6e-06, 2e-08)
vacuum = ba.RefractiveMaterial("Vacuum", 0, 0)
# Particles
ff = ba.Sphere(10*nm)
particle_1 = ba.Particle(material_particle, ff)
particle_2 = ba.Particle(material_particle, ff)
particle_2_position = R3(10*nm, 10*nm, 17.3205080757*nm)
particle_2.translate(particle_2_position)
# Composition of particles at specific positions
basis = ba.Compound()
basis.addComponent(particle_1)
basis.addComponent(particle_2)
# 2D lattices
lattice = ba.HexagonalLattice2D(20*nm, 0)
# Interference functions
iff = ba.Interference2DLattice(lattice)
profile = ba.Profile2DCauchy(10*nm, 10*nm, 0)
iff.setDecayFunction(profile)
# Particle layouts
layout = ba.ParticleLayout()
layout.addParticle(basis)
layout.setInterference(iff)
layout.setTotalParticleSurfaceDensity(0.00288675134595)
# Layers
layer_1 = ba.Layer(vacuum)
layer_1.addLayout(layout)
layer_2 = ba.Layer(material_substrate)
# Sample
sample = ba.Sample()
sample.addLayer(layer_1)
sample.addLayer(layer_2)
return sample
def get_simulation(sample):
beam = ba.Beam(1e9, 0.1*nm, 0.2*deg)
n = 200
detector = ba.SphericalDetector(n, -1*deg, 1*deg, n, 0, 1*deg)
simulation = ba.ScatteringSimulation(beam, sample, detector)
return simulation
if __name__ == '__main__':
sample = get_sample()
simulation = get_simulation(sample)
result = simulation.simulate()
bp.plot_datafield(result)
bp.plt.show()
|