1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
/*
This file is part of the Boson game
Copyright (C) 2002-2005 Andreas Beckermann (b_mann@gmx.de)
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "math/boquaternion.h"
#include "math/bomatrix.h"
#include "math/bo3dtoolsbase.h"
/***** BoQuaternion *****/
BoMatrix BoQuaternion::matrix() const
{
BoMatrix m;
const float x = mV[0];
const float y = mV[1];
const float z = mV[2];
const float xx = x * x;
const float yy = y * y;
const float zz = z * z;
const float xy = x * y;
const float xz = x * z;
const float xw = mW * x;
const float yz = y * z;
const float yw = mW * y;
const float zw = mW * z;
m.setElement(0, 0, 1.0f - 2.0f * (yy + zz));
m.setElement(1, 0, 2.0f * (xy + zw));
m.setElement(2, 0, 2.0f * (xz - yw));
m.setElement(0, 1, 2.0f * (xy - zw));
m.setElement(1, 1, 1.0f - 2.0f * (xx + zz));
m.setElement(2, 1, 2.0f * (yz + xw));
m.setElement(0, 2, 2.0f * (xz + yw));
m.setElement(1, 2, 2.0f * (yz - xw));
m.setElement(2, 2, 1.0f - 2.0f * (xx + yy));
return m;
}
float BoQuaternion::length() const
{
return (float)sqrt(mW * mW + mV[0] * mV[0] + mV[1] * mV[1] + mV[2] * mV[2]);
}
void BoQuaternion::setRotation(const BoVector3Float& direction_, const BoVector3Float& up_)
{
BoVector3Float dir(direction_);
BoVector3Float up(up_);
dir.normalize();
BoVector3Float x = BoVector3Float::crossProduct(up, dir);
BoVector3Float y = BoVector3Float::crossProduct(dir, x);
x.normalize();
y.normalize();
BoMatrix M;
M.setElement(0, 0, x[0]);
M.setElement(0, 1, x[1]);
M.setElement(0, 2, x[2]);
M.setElement(1, 0, y[0]);
M.setElement(1, 1, y[1]);
M.setElement(1, 2, y[2]);
M.setElement(2, 0, dir[0]);
M.setElement(2, 1, dir[1]);
M.setElement(2, 2, dir[2]);
setRotation(M);
}
void BoQuaternion::setRotation(float angle, const BoVector3Float& axis)
{
BoVector3Float normAxis = axis;
normAxis.normalize();
float sina = sin(Bo3dToolsBase::deg2rad(angle / 2));
mW = cos(Bo3dToolsBase::deg2rad(angle / 2));
mV.set(normAxis[0] * sina, normAxis[1] * sina, normAxis[2] * sina);
normalize();
}
void BoQuaternion::setRotation(float angleX, float angleY, float angleZ)
{
BoQuaternion x, y, z;
// one quaternion per axis
x.set((float)cos(Bo3dToolsBase::deg2rad(angleX/2)), BoVector3Float((float)sin(Bo3dToolsBase::deg2rad(angleX/2)), 0.0f, 0.0f));
y.set((float)cos(Bo3dToolsBase::deg2rad(angleY/2)), BoVector3Float(0.0f, (float)sin(Bo3dToolsBase::deg2rad(angleY/2)), 0.0f));
z.set((float)cos(Bo3dToolsBase::deg2rad(angleZ/2)), BoVector3Float(0.0f, 0.0f, (float)sin(Bo3dToolsBase::deg2rad(angleZ/2))));
x.multiply(y);
x.multiply(z);
set(x);
normalize();
}
void BoQuaternion::setRotation(const BoMatrix& rotationMatrix)
{
// See Q55 in the quat faq on http://www.j3d.org/matrix_faq/matrfaq_latest.html
// WARNING: although they refer to a column order matrix in Q54, they use _row_
// order here!
float x, y, z, w;
const float* m = rotationMatrix.data();
float t = 1.0f + m[0] + m[5] + m[10];
if (t > 0.0f)
{
float s = sqrtf(t) * 2.0f;
x = (m[6] - m[9]) / s;
y = (m[8] - m[2]) / s;
z = (m[1] - m[4]) / s;
w = 0.25f * s;
}
else if (m[0] > m[5] && m[0] > m[10])
{
float s = sqrtf(1.0 + m[0] - m[5] - m[10]) * 2.0f;
x = 0.25f * s;
y = (m[1] + m[4]) / s;
z = (m[8] + m[2]) / s;
w = (m[6] - m[9]) / s;
}
else if (m[5] > m[10])
{
float s = sqrtf(1.0 + m[5] - m[0] - m[10]) * 2.0f;
x = (m[1] + m[4]) / s;
y = 0.25f * s;
z = (m[6] + m[9]) / s;
w = (m[8] - m[2]) / s;
}
else
{
float s = sqrtf(1.0 + m[10] - m[0] - m[5]) * 2.0f;
x = (m[8] + m[2]) / s;
y = (m[6] + m[9]) / s;
z = 0.25f * s;
w = (m[1] - m[4]) / s;
}
mW = w;
mV.set(x, y, z);
}
void BoQuaternion::toRotation(float* angle, BoVector3Float* axis)
{
// see Q 57 in quat faq on http://www.j3d.org/matrix_faq/matrfaq_latest.html
if (!angle || !axis)
{
return;
}
normalize();
const float cosa = mW;
*angle = acos(cosa) * 2;
*angle = Bo3dToolsBase::rad2deg(*angle);
float sina = (float)sqrt(1.0 - cosa * cosa);
if (fabsf(sina) < 0.0005)
{
sina = 1.0f;
}
axis->set(mV.x() / sina, mV.y() / sina, mV.z() / sina);
}
void BoQuaternion::toRotation(float* alpha, float* beta, float* gamma)
{
if (!alpha || !beta || !gamma)
{
return;
}
BoMatrix m = matrix();
m.toRotation(alpha, beta, gamma);
}
void BoQuaternion::transform(BoVector3Float* v, const BoVector3Float* input) const
{
BoQuaternion q = BoQuaternion(0, *input);
BoQuaternion tmp = BoQuaternion::multiply(*this, q);
// we assume this is a unit quaternion, then the inverse is equal to the
// conjugate
tmp.multiply(conjugate());
v->set(tmp.mV);
}
/*
* vim:et sw=2
*/
|