File: boquaternion.cpp

package info (click to toggle)
boson 0.13-4
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 12,992 kB
  • ctags: 29,287
  • sloc: cpp: 203,902; ansic: 9,959; makefile: 75; sh: 64; sed: 47
file content (198 lines) | stat: -rw-r--r-- 5,356 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
    This file is part of the Boson game
    Copyright (C) 2002-2005 Andreas Beckermann (b_mann@gmx.de)

    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/

#include "math/boquaternion.h"

#include "math/bomatrix.h"
#include "math/bo3dtoolsbase.h"

/*****  BoQuaternion  *****/

BoMatrix BoQuaternion::matrix() const
{
 BoMatrix m;
 const float x = mV[0];
 const float y = mV[1];
 const float z = mV[2];
 const float xx = x * x;
 const float yy = y * y;
 const float zz = z * z;
 const float xy = x * y;
 const float xz = x * z;
 const float xw = mW * x;
 const float yz = y * z;
 const float yw = mW * y;
 const float zw = mW * z;
 m.setElement(0, 0, 1.0f - 2.0f * (yy + zz));
 m.setElement(1, 0,        2.0f * (xy + zw));
 m.setElement(2, 0,        2.0f * (xz - yw));

 m.setElement(0, 1,        2.0f * (xy - zw));
 m.setElement(1, 1, 1.0f - 2.0f * (xx + zz));
 m.setElement(2, 1,        2.0f * (yz + xw));

 m.setElement(0, 2,        2.0f * (xz + yw));
 m.setElement(1, 2,        2.0f * (yz - xw));
 m.setElement(2, 2, 1.0f - 2.0f * (xx + yy));

 return m;
}

float BoQuaternion::length() const
{
 return (float)sqrt(mW * mW + mV[0] * mV[0] + mV[1] * mV[1] + mV[2] * mV[2]);
}

void BoQuaternion::setRotation(const BoVector3Float& direction_, const BoVector3Float& up_)
{
 BoVector3Float dir(direction_);
 BoVector3Float up(up_);
 dir.normalize();

 BoVector3Float x = BoVector3Float::crossProduct(up, dir);
 BoVector3Float y = BoVector3Float::crossProduct(dir, x);
 x.normalize();
 y.normalize();

 BoMatrix M;
 M.setElement(0, 0, x[0]);
 M.setElement(0, 1, x[1]);
 M.setElement(0, 2, x[2]);

 M.setElement(1, 0, y[0]);
 M.setElement(1, 1, y[1]);
 M.setElement(1, 2, y[2]);

 M.setElement(2, 0, dir[0]);
 M.setElement(2, 1, dir[1]);
 M.setElement(2, 2, dir[2]);

 setRotation(M);
}

void BoQuaternion::setRotation(float angle, const BoVector3Float& axis)
{
 BoVector3Float normAxis = axis;
 normAxis.normalize();
 float sina = sin(Bo3dToolsBase::deg2rad(angle / 2));
 mW = cos(Bo3dToolsBase::deg2rad(angle / 2));
 mV.set(normAxis[0] * sina, normAxis[1] * sina, normAxis[2] * sina);
 normalize();
}

void BoQuaternion::setRotation(float angleX, float angleY, float angleZ)
{
 BoQuaternion x, y, z;
 // one quaternion per axis
 x.set((float)cos(Bo3dToolsBase::deg2rad(angleX/2)), BoVector3Float((float)sin(Bo3dToolsBase::deg2rad(angleX/2)), 0.0f, 0.0f));
 y.set((float)cos(Bo3dToolsBase::deg2rad(angleY/2)), BoVector3Float(0.0f, (float)sin(Bo3dToolsBase::deg2rad(angleY/2)), 0.0f));
 z.set((float)cos(Bo3dToolsBase::deg2rad(angleZ/2)), BoVector3Float(0.0f, 0.0f, (float)sin(Bo3dToolsBase::deg2rad(angleZ/2))));
 x.multiply(y);
 x.multiply(z);
 set(x);
 normalize();
}

void BoQuaternion::setRotation(const BoMatrix& rotationMatrix)
{
 // See Q55 in the quat faq on http://www.j3d.org/matrix_faq/matrfaq_latest.html
 // WARNING: although they refer to a column order matrix in Q54, they use _row_
 // order here!
 float x, y, z, w;
 const float* m = rotationMatrix.data();
 float t = 1.0f + m[0] + m[5] + m[10];
 if (t > 0.0f)
 {
   float s = sqrtf(t) * 2.0f;
   x = (m[6] - m[9]) / s;
   y = (m[8] - m[2]) / s;
   z = (m[1] - m[4]) / s;
   w = 0.25f * s;
 }
 else if (m[0] > m[5] && m[0] > m[10])
 {
   float s = sqrtf(1.0 + m[0] - m[5] - m[10]) * 2.0f;
   x = 0.25f * s;
   y = (m[1] + m[4]) / s;
   z = (m[8] + m[2]) / s;
   w = (m[6] - m[9]) / s;
 }
 else if (m[5] > m[10])
 {
   float s = sqrtf(1.0 + m[5] - m[0] - m[10]) * 2.0f;
   x = (m[1] + m[4]) / s;
   y = 0.25f * s;
   z = (m[6] + m[9]) / s;
   w = (m[8] - m[2]) / s;
 }
 else
 {
   float s = sqrtf(1.0 + m[10] - m[0] - m[5]) * 2.0f;
   x = (m[8] + m[2]) / s;
   y = (m[6] + m[9]) / s;
   z = 0.25f * s;
   w = (m[1] - m[4]) / s;
 }
 mW = w;
 mV.set(x, y, z);
}

void BoQuaternion::toRotation(float* angle, BoVector3Float* axis)
{
 // see Q 57 in quat faq on http://www.j3d.org/matrix_faq/matrfaq_latest.html
 if (!angle || !axis)
 {
   return;
 }
 normalize();
 const float cosa = mW;
 *angle = acos(cosa) * 2;
 *angle = Bo3dToolsBase::rad2deg(*angle);
 float sina = (float)sqrt(1.0 - cosa * cosa);
 if (fabsf(sina) < 0.0005)
 {
   sina = 1.0f;
 }
 axis->set(mV.x() / sina, mV.y() / sina, mV.z() / sina);
}

void BoQuaternion::toRotation(float* alpha, float* beta, float* gamma)
{
 if (!alpha || !beta || !gamma)
 {
   return;
 }
 BoMatrix m = matrix();
 m.toRotation(alpha, beta, gamma);
}


void BoQuaternion::transform(BoVector3Float* v, const BoVector3Float* input) const
{
 BoQuaternion q = BoQuaternion(0, *input);
 BoQuaternion tmp = BoQuaternion::multiply(*this, q);
 // we assume this is a unit quaternion, then the inverse is equal to the
 // conjugate
 tmp.multiply(conjugate());
 v->set(tmp.mV);
}

/*
 * vim:et sw=2
 */