1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
|
(**************************************************************************)
(* *)
(* Copyright (C) 2012 Johannes 'josch' Schauer <j.schauer@email.de> *)
(* Copyright (C) 2012 Pietro Abate <pietro.abate@pps.jussieu.fr> *)
(* *)
(* This library is free software: you can redistribute it and/or modify *)
(* it under the terms of the GNU Lesser General Public License as *)
(* published by the Free Software Foundation, either version 3 of the *)
(* License, or (at your option) any later version. A special linking *)
(* exception to the GNU Lesser General Public License applies to this *)
(* library, see the COPYING file for more information. *)
(**************************************************************************)
open! ExtLib
open Dose_common
open Dose_debian
open Dose_algo
#define __label __FILE__
let label = __label ;;
include Util.Logging(struct let label = label end) ;;
let progressbar_build_graph = Util.Progress.create "build_graph"
let progressbar_build_graph_bfs = Util.Progress.create "build_graph_bfs"
let timer_build_graph = Util.Timer.create "build_graph"
let timer_build_graph_bfs = Util.Timer.create "build_graph_bfs"
module IntSet = BootstrapCommon.IntSet
type vertex =
|InstSet of (int * IntSet.t)
|SrcPkg of int
module Unique = Unique.Make(struct
type t = vertex
let compare v1 v2 =
match v1,v2 with
|SrcPkg p1, SrcPkg p2 -> Stdlib.compare p1 p2
|InstSet (p1,s1), InstSet (p2,s2) -> begin
match Stdlib.compare p1 p2 with
| 0 -> IntSet.compare s1 s2
| i -> i
end
|SrcPkg _, InstSet _ -> -1
|InstSet _, SrcPkg _ -> 1
end)
type kind =
|BuildDep
|BuildsFrom of IntSet.t ref
type 'a edge = {
depend : kind;
annotation : 'a list
}
let default_edge = { depend = BuildsFrom (ref IntSet.empty); annotation = [] }
type et = [`Loop | `NoLoop | `StrongDep ]
(* we cannot just use the polymorphic compare here because that one checks
* for structural equality and the Set data structure is structurally
* different depending on the order in which elements were added to the set.
* Thus instead, use Set.compare *)
let compare_edge e1 e2 =
match e1, e2 with
| { depend = BuildDep }, { depend = BuildDep } -> 0
| { depend = BuildsFrom s1 }, {depend = BuildsFrom s2} -> IntSet.compare !s1 !s2
| { depend = BuildDep }, { depend = BuildsFrom _ } -> 1
| { depend = BuildsFrom _ }, { depend = BuildDep } -> -1
module PkgV = struct
type t = Unique.t
let compare v1 v2 = Stdlib.compare (Unique.uid v1) (Unique.uid v2)
let hash = Unique.uid
let equal v1 v2 = (Unique.uid v1) = (Unique.uid v2)
end
module PkgE = struct
type t = et edge
let compare x y = compare_edge x y
let equal x y = ( compare_edge x y ) = 0
let default = default_edge
end
module G = Graph.Imperative.Digraph.ConcreteBidirectionalLabeled(PkgV)(PkgE)
module VertexSet = Set.Make(G.V)
module EdgeSet = Set.Make(G.E)
(* given a list of tuples where the first element is a source package and the
* second element is a partitioning of its installation set between its direct
* dependencies, connect binary packages to source packages according to
* "bin2src" and omit connections of binary packages to source packages for
* binary packages that qualify as "available" *)
let graph_helper available bin2src univ partitionofsrc sl =
let g = G.create () in
let seen = Hashtbl.create (List.length sl) in
let rec aux = function
| [] -> g
| todo -> begin
(* generate dependency sets outside of graph generation because the
* graph is imperative and we must not executed code with side-effects
* inside a parallel block *)
let worker srcpkg =
Util.Progress.progress progressbar_build_graph;
let _, partitions = partitionofsrc srcpkg in
let srcpkgid = CudfAdd.pkgtoint univ srcpkg in
(srcpkgid, partitions)
in
let instsets = List.map worker todo in
(* we must not do this iteration in the block above because side
* effects from parallel blocks are discarded *)
List.iter (fun (srcpkgid,_) -> Hashtbl.add seen srcpkgid ()) instsets;
(* go over all source packages and their partitions installation sets
* and create a new list of source packages to work on if the new
* source package has not been seen yet *)
let todo = List.fold_left (fun acc (srcpkgid, partitions) ->
begin if not (Hashtbl.mem seen srcpkgid) then fatal "something went wrong" end;
let src = Unique.create (SrcPkg srcpkgid) in
(* we already add the source vertex here explicitly even though
* this vertex is normally added together with the edges to its
* InstSet vertices. This is so that when creating a graph starting
* from a single source package and that source package has
* unsatisfiable dependencies that source package will still be
* part of the output (with no outgoing edges) *)
G.add_vertex g src;
List.fold_left (fun acc (pid,is) ->
let instset = Unique.create (InstSet (pid,is)) in
let label = { depend = BuildDep; annotation = [] } in
let edge = (src,label,instset) in
G.add_edge_e g edge;
(* Only connect the InstSet vertex to the source packages
* building the binary packages in "is" and not "pid".
* "pid" has to be explicitly part of "is" if a connection
* from this InstSet vertex to a SrcPkg should be made.
* This is important to not include non-strong direct
* dependencies in a strong dependency graph. *)
IntSet.fold (fun pid acc ->
let binpkg = try
CudfAdd.inttopkg univ pid
with Not_found -> fatal "cannot find pkg for pid %d" pid
in
if not (available binpkg) then begin
let srcpkgdep = bin2src binpkg in
let srcpkgdepid = CudfAdd.pkgtoint univ srcpkgdep in
let dst = Unique.create (SrcPkg srcpkgdepid) in
begin try begin match G.E.label (G.find_edge g instset dst) with
|{ depend = BuildsFrom s } -> s := IntSet.add pid !s
|_ -> assert false
end with Not_found -> begin
let label = { depend = BuildsFrom (ref (IntSet.singleton pid)); annotation = [] } in
let edge = (instset,label,dst) in
G.add_edge_e g edge
end;
end;
if Hashtbl.mem seen srcpkgdepid then
acc
else begin
Hashtbl.add seen srcpkgdepid ();
srcpkgdep::acc
end
end else acc
) is acc
) acc partitions
) [] instsets
in
aux todo
end
in
aux sl
;;
let get_src_package ?(allowmismatch=false) univ pkg = try
BootstrapCommon.get_src_package ~allowmismatch univ pkg
with Sources.NotfoundSrc ->
failwith (Printf.sprintf "can't find source package for binary package %s"
(BootstrapCommon.string_of_package pkg))
;;
(* create and time a normal buildgraph by calculating installation sets *)
let dist_graph ?(global_constraints=[]) ?(available=(fun _ -> true)) ?(allowmismatch=false) ?(opt=false) custom_is_ht univ sl =
Util.Timer.start timer_build_graph;
Util.Progress.set_total progressbar_build_graph (List.length sl);
let global_constraints =
List.map (fun (vpkg,pkglist) ->
(vpkg,List.map (CudfAdd.pkgtoint univ) pkglist)
) global_constraints
in
let bin2src = get_src_package ~allowmismatch univ in
let pool = Depsolver_int.init_pool_univ ~global_constraints univ in
let opt_partition_cache = Hashtbl.create 10000 in
let partitionofsrc = if opt then
BootstrapCommon.compute_dependency_sets_opt ~global_constraints ~partition:true ~available opt_partition_cache pool univ
else
BootstrapCommon.compute_dependency_sets ~global_constraints ~partition:true custom_is_ht pool univ
in
Util.Timer.stop timer_build_graph (graph_helper available bin2src univ partitionofsrc sl)
;;
(* create and time a buildgraph by calculating installation closures *)
let closure_graph ?(global_constraints=[]) ?(available=(fun _ -> true)) ?(allowmismatch=false) univ sl =
Util.Timer.start timer_build_graph;
Util.Progress.set_total progressbar_build_graph (List.length sl);
let global_constraints =
List.map (fun (vpkg,pkglist) ->
(vpkg,List.map (CudfAdd.pkgtoint univ) pkglist)
) global_constraints
in
let bin2src = get_src_package ~allowmismatch univ in
let pool = Depsolver_int.init_pool_univ ~global_constraints univ in
let globalid = Cudf.universe_size univ in
let to_set l = List.fold_right IntSet.add l IntSet.empty in
(* rule: connect everything to everything else *)
let partitionofsrc src =
let l = List.fold_left (fun acc vpkglist ->
let disj = CudfAdd.resolve_vpkgs_int univ vpkglist in
List.fold_left (fun acc2 pid ->
let dcs = Depsolver_int.dependency_closure_cache pool [pid] in
(pid, IntSet.remove globalid (to_set dcs))::acc2
) acc disj
) [] src.Cudf.depends in
IntSet.empty, l
in
Util.Timer.stop timer_build_graph (graph_helper available bin2src univ partitionofsrc sl)
;;
(* create and time a normal buildgraph by calculating strong dependencies *)
let strong_graph ?(global_constraints=[]) ?(available=(fun _ -> true)) ?(allowmismatch=false) univ sl =
Util.Timer.start timer_build_graph;
Util.Progress.set_total progressbar_build_graph (List.length sl);
let global_constraints =
List.map (fun (vpkg,pkglist) ->
(vpkg,List.map (CudfAdd.pkgtoint univ) pkglist)
) global_constraints
in
let bin2src = get_src_package ~allowmismatch univ in
let pool = Depsolver_int.init_pool_univ ~global_constraints univ in
let sdg = Strongdeps.strongdeps_univ univ in
(* connect all binary packages to the Essential:yes packages *)
if List.length global_constraints > 0 then begin
(* get all binary packages that are Essential:yes *)
let essential = Cudf.get_packages
~filter:(fun pkg ->
BootstrapCommon.debtype_of_cudfpkg pkg = `BinPkg
&& BootstrapCommon.debessential_of_cudfpkg pkg)
univ
in
(* calculate the strong dependency graph of all Essential:yes packages and
* add all its edges to the original graph. This is done because some
* Essential:yes packages are never explicitly depended upon so their
* vertices will otherwise not show up in the graph *)
Defaultgraphs.PackageGraph.G.iter_edges
(Defaultgraphs.PackageGraph.G.add_edge sdg)
(Strongdeps.strongdeps univ essential);
(* connect all vertices in the original graph to all Essential:yes packages *)
Defaultgraphs.PackageGraph.G.iter_vertex
(fun v -> List.iter
(Defaultgraphs.PackageGraph.add_edge ~transitive:true sdg v)
essential) sdg
end;
let tointset l = List.fold_left (fun acc e -> IntSet.add (CudfAdd.pkgtoint univ e) acc) IntSet.empty l in
let to_set l = List.fold_right IntSet.add l IntSet.empty in
(* rule: connect each source package to those source packages which build the
* binary packages that make their strong dependencies *)
(* if the dependency closure of any direct dependency has a non-empty
* intersection with the set of strong dependencies, add a connection. *)
let partitionofsrc src =
(* the package in question might not be part of the strong dependency
* graph if it had unsatisfiable dependencies *)
if Defaultgraphs.PackageGraph.G.mem_vertex sdg src then
let strongdeps = Defaultgraphs.PackageGraph.succ_list sdg src in
let strongdepss = tointset strongdeps in
let l = List.fold_left (fun acc vpkglist ->
let disj = CudfAdd.resolve_vpkgs_int univ vpkglist in
List.fold_left (fun acc2 pid ->
let dc = Depsolver_int.dependency_closure_cache pool [pid] in
let dcs = to_set dc in
let inters = IntSet.inter strongdepss dcs in
if not(IntSet.is_empty inters) then (pid, inters)::acc2 else acc2
) acc disj
) [] src.Cudf.depends in
IntSet.empty, l
else begin
warning "package %s cannot be installed" (BootstrapCommon.string_of_package src);
IntSet.empty, []
end
in
Util.Timer.stop timer_build_graph (graph_helper available bin2src univ partitionofsrc sl)
;;
(* Build the dependency source graph bfs from a root node *)
let dist_graph_bfs ?(global_constraints=[]) ?(maxdepth=max_int) ?(available=(fun _ -> true)) ?(allowmismatch=false) custom_is_ht univ rootlist =
Util.Timer.start timer_build_graph_bfs;
Util.Progress.set_total progressbar_build_graph_bfs (Cudf.universe_size univ);
let g = G.create () in
let pool = Depsolver_int.init_pool_univ ~global_constraints univ in
let bin2src = get_src_package ~allowmismatch univ in
let queue = Queue.create () in
let visited = Hashtbl.create (Cudf.universe_size univ) in
(* add the root source package *)
List.iter (fun root -> Queue.add (root,0) queue ) rootlist;
begin try while (Queue.length queue > 0) do
let (srcpkg,level) = Queue.take queue in
let src = Unique.create (SrcPkg (CudfAdd.pkgtoint univ srcpkg)) in
G.add_vertex g src;
if not(Hashtbl.mem visited src) && level < maxdepth then begin
Util.Progress.progress progressbar_build_graph_bfs;
Hashtbl.add visited src ();
(* if the package cannot be compiled the List.iter will not happen *)
let _, partitions = BootstrapCommon.compute_dependency_sets ~global_constraints ~partition:true custom_is_ht pool univ srcpkg in
List.iter (fun (pid,is) ->
(* let open Cudf in Cudf_printer.pp_package stdout (CudfAdd.inttopkg univ pid); *)
let instset = Unique.create (InstSet (pid,is)) in
let label = { depend = BuildDep; annotation = [] } in
let edge = (src,label,instset) in
(* src -> instset edge *)
G.add_edge_e g edge;
IntSet.iter (fun pid ->
let binpkg = CudfAdd.inttopkg univ pid in
if not (available binpkg) then begin
let srcpkgdep = bin2src binpkg in
let dst = Unique.create (SrcPkg (CudfAdd.pkgtoint univ srcpkgdep)) in
(* we add a new src to the queue of sources to compile *)
Queue.add (srcpkgdep,level+1) queue;
(* the edge (instset -> src edge) aleady exists. In this case we
* add the pid of the binary to the list BuildsFrom *)
try match G.E.label (G.find_edge g instset dst) with
|{ depend = BuildsFrom s } -> s := IntSet.add pid !s
|_ -> assert false
with Not_found -> begin
let label = { depend = BuildsFrom (ref (IntSet.singleton pid)); annotation = [] } in
let edge = (instset,label,dst) in
(* instset -> src edge *)
G.add_edge_e g edge
end
end
) is
) partitions;
end;
(* here we check if the graph contains cycles. if this is the case we stop *)
if false then raise Exit
done with Exit -> () end ;
Util.Timer.stop timer_build_graph_bfs g
;;
let from_ic universe native_arch ic =
let getstr n l =
try match List.assoc n l with
| GraphmlReader.String s -> s
| _ -> failwith "expected string"
with Not_found -> failwith (Printf.sprintf "cannot find key %s in list" n)
in
let getint n l =
try match List.assoc n l with
| GraphmlReader.Int i -> i
| _ -> failwith "expected integer"
with Not_found -> failwith (Printf.sprintf "cannot find key %s in list" n)
in
let node l =
match getstr "kind" l with
| "SrcPkg" -> begin
let cudfname = CudfAdd.encode (getstr "cudfname" l) in
let cudfversion = getint "cudfversion" l in
let srcpkg = try
Cudf.lookup_package universe (cudfname,cudfversion)
with Not_found ->
failwith (Printf.sprintf "cannot find cudf package %s (= %d)"
cudfname cudfversion)
in
Unique.create (SrcPkg (CudfAdd.pkgtoint universe srcpkg))
end
| "InstSet" -> begin
let cudfname = CudfAdd.encode (getstr "cudfname" l) in
let cudfversion = getint "cudfversion" l in
let pkg = try
Cudf.lookup_package universe (cudfname,cudfversion)
with Not_found ->
failwith (Printf.sprintf "cannot find cudf package %s (= %d)"
cudfname cudfversion)
in
let pid = CudfAdd.pkgtoint universe pkg in
let binaries = try getstr "binaries" l
with Not_found -> failwith "cannot find mandatory InstSet vertex attribute \"binaries\""
in
let is = BootstrapCommon.parse_debian_pkgstring universe native_arch binaries in
Unique.create (InstSet (pid,is))
end
| _ -> failwith "invalid node kind"
in
let edge l =
match getstr "kind" l with
| "builddep" ->
{depend = BuildDep; annotation = []}
| "buildsfrom" ->
let binaries = try getstr "binaries" l
with Not_found -> failwith "cannot find mandatory buildsfrom edge attribute \"binaries\""
in
let is = BootstrapCommon.parse_debian_pkgstring universe native_arch binaries in
{depend = BuildsFrom (ref is); annotation = []}
| _ -> failwith "invalid edge kind"
in
let module GB = Graph.Builder.I(G) in
let module GR = GraphmlReader.Parse(GB)(struct let node = node let edge = edge end) in
(* we want the graph builder to traverse the nodes and edges of the input XML
* in a deterministic order. This is so that given the same input graph
* (where "same" means that all node and edge attributes are the same but
* their order in the XML document may be different) the resulting SrcPkg
* and InstSet nodes get assigned the same Unique.uid. This in turn is so
* that it is possible to quickly get a stable order of all vertices
* between individual runs because many algorithms will sort input
* vertex lists and sorting by their Unique.uid is many times faster than
* sorting by package name and version comparison.
*
* So instead of letting all algorithms using this graph sort by package name
* and version, we want to be able to allow quick integer based sorts. But
* for that the integer assigned to each package name/version must be
* the same between different runs even if the order in which nodes and
* edges in the input graph should be different.
*
* We rely on the mandatory "id" attribute of nodes and edges to be the same
* between different runs for the same content. We expect only the order
* to be different as the order should not matter (both nodes and edges are
* sets)
* *)
let sort l1 l2 =
let id1 = List.assoc "id" l1 in
let id2 = List.assoc "id" l2 in
Stdlib.compare id1 id2
in
GR.parse ~nodesort:(Some sort) ~edgesort:(Some sort) ic
;;
module Graphml (U : sig val univ : Cudf.universe end) = struct
include G
let vertex_properties =
["name","string",None;
"version","string",None;
"binaries","string",None;
"cudfversion","int",None;
"cudfname","string",None;
"architecture","string",None;
"type","string",None;
"kind","string",None;
]
let edge_properties = [
"kind","string",Some "builddep";
"vpkglist","string",None;
"binaries","string",None;
"annotation","string",None
]
let string_of_vertex_kind = function
|InstSet _ -> "InstSet"
|SrcPkg _ -> "SrcPkg"
let map_vertex vertex =
let vertex = Unique.value vertex in
match vertex with
|SrcPkg id->
let pkg = CudfAdd.inttopkg U.univ id in
let kind = ("kind",string_of_vertex_kind vertex) in
let cudfname = ("cudfname", CudfAdd.decode pkg.Cudf.package) in
let prop =
(* store cudf property "version" in vertex property "cudfversion"
* store cudf property "number" in vertex property "version"
* for all other vertex properties, take the cudf property directly *)
List.filter_map (fun (key,_,_) ->
let k =
if key = "cudfversion" then "version"
else if key = "version" then "number"
else key
in
try
let value = Cudf.lookup_package_property pkg k in
Some(key,value)
with Not_found -> None
) vertex_properties
in
let prop = kind :: cudfname :: prop in
(* only set those attributes which are not empty *)
List.filter_map (fun (k,v) ->
if v = "" then None else Some(k,v)
) prop
|InstSet (pid,is) ->
let binaries =
let bl =
List.map (fun pid ->
let pkg = CudfAdd.inttopkg U.univ pid in
BootstrapCommon.string_of_package pkg
) (IntSet.elements is)
in
("binaries",String.concat "," bl)
in
let pkg = CudfAdd.inttopkg U.univ pid in
let kind = ("kind",string_of_vertex_kind vertex) in
let cudfname = ("cudfname", CudfAdd.decode pkg.Cudf.package) in
let prop =
(* store cudf property "version" in vertex property "cudfversion"
* store cudf property "number" in vertex property "version"
* for all other vertex properties, take the cudf property directly *)
List.filter_map (fun (key,_,_) ->
let k =
if key = "cudfversion" then "version"
else if key = "version" then "number"
else key
in
try let value = Cudf.lookup_package_property pkg k in
Some(key,value)
with Not_found -> None
) vertex_properties
in
let prop = kind :: binaries :: cudfname :: prop in
(* only set those attributes which are not empty *)
List.filter_map (fun (k,v) ->
if v = "" then None else Some(k,v)
) prop
let map_edge (_,label,_) =
let annot =
match label with
| {annotation} ->
let annot = List.filter_map (fun a ->
match a with
| `StrongDep -> Some("strong")
| _ -> None
) annotation in
("annotation", String.concat "," annot)
in
match label with
|{ depend = BuildsFrom { contents = s } } ->
let witness =
let sl =
List.map (fun pid ->
let pkg = CudfAdd.inttopkg U.univ pid in
BootstrapCommon.string_of_package pkg
) (IntSet.elements s)
in
("binaries", String.concat "," sl)
in
let prop = [("kind","buildsfrom");witness;annot] in
(* only set those attributes which are not empty *)
List.filter_map (fun (k,v) ->
if v = "" then None else Some(k,v)
) prop
|{ depend = BuildDep } ->
let kind = ("kind","builddep") in
let prop = [kind;annot] in
(* only set those attributes which are not empty *)
List.filter_map (fun (k,v) ->
if v = "" then None else Some(k,v)
) prop
let vertex_uid = G.V.hash
let edge_uid e = Hashtbl.hash (vertex_uid (G.E.src e),G.E.label e,vertex_uid (G.E.dst e))
end
module Oper = Defaultgraphs.GraphOper(G)
module Comp = Graph.Components.Make(G)
module Cycles = GraphUtils.FindCycles(G)
module Utils = GraphUtils.GraphUtils(G)
module Dfs = Graph.Traverse.Dfs(G)
module T = Graph.Topological.Make(G)
module Printer (U : sig val univ : Cudf.universe end) = Graph.Graphml.Print(G)(Graphml(struct let univ = U.univ end))
|