1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
|
==========
Bottleneck
==========
Bottleneck is a collection of fast NumPy array functions written in C.
Let's give it a try. Create a NumPy array::
>>> import numpy as np
>>> a = np.array([1, 2, np.nan, 4, 5])
Find the nanmean::
>>> import bottleneck as bn
>>> bn.nanmean(a)
3.0
Moving window mean::
>>> bn.move_mean(a, window=2, min_count=1)
array([ 1. , 1.5, 2. , 4. , 4.5])
Benchmark
=========
Bottleneck comes with a benchmark suite::
>>> bn.bench()
Bottleneck performance benchmark
Bottleneck 1.3.0.dev0; Numpy 1.12.1
Speed is NumPy time divided by Bottleneck time
NaN means approx one-fifth NaNs; float64 used
no NaN no NaN NaN no NaN NaN
(100,) (1000,1000)(1000,1000)(1000,1000)(1000,1000)
axis=0 axis=0 axis=0 axis=1 axis=1
nansum 67.3 0.3 0.7 2.5 2.4
nanmean 194.8 1.9 2.1 3.4 3.1
nanstd 241.5 1.6 2.1 2.7 2.6
nanvar 229.7 1.7 2.1 2.7 2.5
nanmin 34.1 0.7 1.1 0.8 2.6
nanmax 45.6 0.7 2.7 1.0 3.7
median 111.0 1.3 5.6 1.0 4.8
nanmedian 108.8 5.9 6.7 5.6 6.7
ss 16.3 1.1 1.2 1.6 1.6
nanargmin 89.2 2.9 5.1 2.2 5.6
nanargmax 107.4 3.0 5.4 2.2 5.8
anynan 19.4 0.3 35.0 0.5 29.9
allnan 39.9 146.6 128.3 115.8 75.6
rankdata 55.0 2.6 2.3 2.9 2.8
nanrankdata 59.8 2.8 2.2 3.2 2.5
partition 4.4 1.2 1.6 1.0 1.4
argpartition 3.5 1.1 1.4 1.1 1.6
replace 17.7 1.4 1.4 1.3 1.4
push 3440.0 7.8 9.5 20.0 15.5
move_sum 4743.0 75.7 156.1 195.4 211.1
move_mean 8760.9 116.2 167.4 252.1 258.8
move_std 8979.9 96.1 196.3 144.0 256.3
move_var 11216.8 127.3 243.9 225.9 321.4
move_min 2245.3 20.6 36.7 23.2 42.1
move_max 2223.7 20.5 37.2 24.1 42.4
move_argmin 3664.0 48.2 73.3 40.2 83.9
move_argmax 3916.9 42.0 75.4 41.5 81.2
move_median 2023.3 166.8 173.7 153.8 154.3
move_rank 1208.5 1.9 1.9 2.5 2.8
You can also run a detailed benchmark for a single function using, for
example, the command::
>>> bn.bench_detailed("move_median", fraction_nan=0.3)
Only arrays with data type (dtype) int32, int64, float32, and float64 are
accelerated. All other dtypes result in calls to slower, unaccelerated
functions. In the rare case of a byte-swapped input array (e.g. a big-endian
array on a little-endian operating system) the function will not be
accelerated regardless of dtype.
Where
=====
=================== ========================================================
download https://pypi.python.org/pypi/Bottleneck
docs http://berkeleyanalytics.com/bottleneck
code https://github.com/kwgoodman/bottleneck
mailing list https://groups.google.com/group/bottle-neck
=================== ========================================================
License
=======
Bottleneck is distributed under a Simplified BSD license. See the LICENSE file
for details.
Install
=======
Requirements:
======================== ====================================================
Bottleneck Python 2.7, 3.5, 3.6; NumPy 1.12.1
Compile gcc, clang, MinGW or MSVC
Unit tests nose
======================== ====================================================
To install Bottleneck on GNU/Linux, Mac OS X, et al.::
$ sudo python setup.py install
To install bottleneck on Windows, first install MinGW and add it to your
system path. Then install Bottleneck with the commands::
python setup.py install --compiler=mingw32
Alternatively, you can use the Windows binaries created by Christoph Gohlke:
http://www.lfd.uci.edu/~gohlke/pythonlibs/#bottleneck
Unit tests
==========
After you have installed Bottleneck, run the suite of unit tests::
>>> import bottleneck as bn
>>> bn.test()
<snip>
Ran 169 tests in 57.205s
OK
<nose.result.TextTestResult run=169 errors=0 failures=0>
|