1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
/* Rainbow classification method with a Dirichlet kernel on each
training document, as worked on by Jerry Xiaojin Zhu. */
/*
Written by: Andrew Kachites McCallum <mccallum@cs.cmu.edu>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
//#include <bow/train_dirichlet.h>
//#include <bow/bpe.h>
#include <math.h>
#include <argp/argp.h>
static int dirk_print_alphas = 0;
/* Extra alpha in addition to alphas learned above. This prevents zero's
when the trained Dirichlet really should have zero alphas. */
static double dirk_prior_alpha = 1.0;
#define PRIOR_ALPHA dirk_prior_alpha
enum {
DIRK_PRINT_ALPHAS_KEY = 5700,
DIRK_PRIOR_ALPHA_KEY,
};
static struct argp_option dirk_options[] =
{
{0,0,0,0,
"Dirichlet Kernel options, --method=dirk:", 910},
{"dirk-prior-alpha", DIRK_PRIOR_ALPHA_KEY, "NUM", 0,
"Set the prior alpha parameter. Defaults to 1.0."},
{"dirk-print-alphas", DIRK_PRINT_ALPHAS_KEY, 0, 0,
"Print the alphas of the Beta distribution learned for each word "
"of the learned prior."},
{0, 0}
};
error_t
dirk_parse_opt (int key, char *arg, struct argp_state *state)
{
switch (key)
{
case DIRK_PRINT_ALPHAS_KEY:
dirk_print_alphas = 1;
break;
case DIRK_PRIOR_ALPHA_KEY:
dirk_prior_alpha = atof (arg);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static const struct argp dirk_argp =
{
dirk_options,
dirk_parse_opt
};
static struct argp_child dirk_argp_child =
{
&dirk_argp, /* This child's argp structure */
0, /* flags for child */
0, /* optional header in help message */
0 /* arbitrary group number for ordering */
};
/* End of command-line options specific to DIRK */
/* Logarithm of the gamma function.
References:
1) W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for
the Natural Logarithm of the Gamma Function,' Math. Comp. 21,
1967, pp. 198-203.
2) K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May,
1969.
3) Hart, Et. Al., Computer Approximations, Wiley and sons, New
York, 1968.
*/
static double
log_gamma (double x)
{
double result, y, xnum, xden;
int i;
static int cache_initialized = 0;
#define cache_size 100
static double cache[cache_size];
static double d1 = -5.772156649015328605195174e-1;
static double p1[] = {
4.945235359296727046734888e0, 2.018112620856775083915565e2,
2.290838373831346393026739e3, 1.131967205903380828685045e4,
2.855724635671635335736389e4, 3.848496228443793359990269e4,
2.637748787624195437963534e4, 7.225813979700288197698961e3
};
static double q1[] = {
6.748212550303777196073036e1, 1.113332393857199323513008e3,
7.738757056935398733233834e3, 2.763987074403340708898585e4,
5.499310206226157329794414e4, 6.161122180066002127833352e4,
3.635127591501940507276287e4, 8.785536302431013170870835e3
};
static double d2 = 4.227843350984671393993777e-1;
static double p2[] = {
4.974607845568932035012064e0, 5.424138599891070494101986e2,
1.550693864978364947665077e4, 1.847932904445632425417223e5,
1.088204769468828767498470e6, 3.338152967987029735917223e6,
5.106661678927352456275255e6, 3.074109054850539556250927e6
};
static double q2[] = {
1.830328399370592604055942e2, 7.765049321445005871323047e3,
1.331903827966074194402448e5, 1.136705821321969608938755e6,
5.267964117437946917577538e6, 1.346701454311101692290052e7,
1.782736530353274213975932e7, 9.533095591844353613395747e6
};
static double d4 = 1.791759469228055000094023e0;
static double p4[] = {
1.474502166059939948905062e4, 2.426813369486704502836312e6,
1.214755574045093227939592e8, 2.663432449630976949898078e9,
2.940378956634553899906876e10, 1.702665737765398868392998e11,
4.926125793377430887588120e11, 5.606251856223951465078242e11
};
static double q4[] = {
2.690530175870899333379843e3, 6.393885654300092398984238e5,
4.135599930241388052042842e7, 1.120872109616147941376570e9,
1.488613728678813811542398e10, 1.016803586272438228077304e11,
3.417476345507377132798597e11, 4.463158187419713286462081e11
};
static double c[] = {
-1.910444077728e-03, 8.4171387781295e-04,
-5.952379913043012e-04, 7.93650793500350248e-04,
-2.777777777777681622553e-03, 8.333333333333333331554247e-02,
5.7083835261e-03
};
static double a = 0.6796875;
if (!cache_initialized)
{
int i;
for (i = 0; i < cache_size; i++)
cache[i] = 0;
cache_initialized = 1;
}
if (fmod (x, 1.0) == 0 && x < cache_size)
{
int i = (int)x;
assert (i < cache_size);
if (cache[i] != 0)
return cache[i];
}
if((x <= 0.5) || ((x > a) && (x <= 1.5))) {
if(x <= 0.5) {
result = -log(x);
/* Test whether X < machine epsilon. */
if(x+1 == 1) {
return result;
}
}
else {
result = 0;
x = (x - 0.5) - 0.5;
}
xnum = 0;
xden = 1;
for(i=0;i<8;i++) {
xnum = xnum * x + p1[i];
xden = xden * x + q1[i];
}
result += x*(d1 + x*(xnum/xden));
}
else if((x <= a) || ((x > 1.5) && (x <= 4))) {
if(x <= a) {
result = -log(x);
x = (x - 0.5) - 0.5;
}
else {
result = 0;
x -= 2;
}
xnum = 0;
xden = 1;
for(i=0;i<8;i++) {
xnum = xnum * x + p2[i];
xden = xden * x + q2[i];
}
result += x*(d2 + x*(xnum/xden));
}
else if(x <= 12) {
x -= 4;
xnum = 0;
xden = -1;
for(i=0;i<8;i++) {
xnum = xnum * x + p4[i];
xden = xden * x + q4[i];
}
result = d4 + x*(xnum/xden);
}
/* X > 12 */
else {
y = log(x);
result = x*(y - 1) - y*0.5 + .9189385332046727417803297;
x = 1/x;
y = x*x;
xnum = c[6];
for(i=0;i<6;i++) {
xnum = xnum * y + c[i];
}
xnum *= x;
result += xnum;
}
if ((i = fmod (x, 1.0) == 0) && x < cache_size
&& (i = (int)x) && cache[i] == 0)
cache[i] = result;
return result;
}
/* The density at possible QUERY_WV of the kernel centered at
KERNEL_WV. KERNEL_WV is d_i; QUERY_WV is d_test. */
double
bow_dirk_log_kernel (int vocab_size,
bow_wv *kernel_wv, bow_wv *query_wv)
{
/* The parameters of the kernel: */
double b = 1;
double a = kernel_wv->num_entries;
double *alphas = alloca (vocab_size * sizeof (double));
int wi, wvi;
double kernel_wv_word_count, query_wv_word_count, increment;
double alphas_sum, density;
/* Calculate the total number of word occurrences in each of the
QUERY_WV and the KERNEL_WV documents. */
kernel_wv_word_count = 0;
for (wvi = 0; wvi < kernel_wv->num_entries; wvi++)
kernel_wv_word_count += kernel_wv->entry[wvi].count;
query_wv_word_count = 0;
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
query_wv_word_count += query_wv->entry[wvi].count;
/* Set the alphas of the Dirichlet distribution that is the kernel
for this KERNEL_WV document */
/* Initialize them all to the B parameter (typically 1) */
for (wi = 0; wi < vocab_size; wi++)
alphas[wi] = b;
alphas_sum = b * vocab_size;
/* Add mass from words in the KERNEL_WV document to the alphas */
for (wvi = 0; wvi < kernel_wv->num_entries; wvi++)
{
increment = a * (kernel_wv->entry[wvi].count / kernel_wv_word_count);
alphas[kernel_wv->entry[wvi].wi] += increment;
alphas_sum += increment;
}
/* Do the Dirichlet integral */
/* Start with the ratio of Gamma functions that is independent of
the individual word counts in the QUERY_WV document. */
density = (log_gamma (alphas_sum)
- log_gamma (query_wv_word_count + alphas_sum));
/* Put in the contribution of each word in the QUERY_WV document. */
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
density += (log_gamma (query_wv->entry[wvi].count
+ alphas[query_wv->entry[wvi].wi])
- log_gamma (alphas[query_wv->entry[wvi].wi]));
/* Density is now a log_probability; simply return it without
turning it into a probability */
return density;
}
/* Classify QUERY_WV. This is d_test */
int
bow_dirk_score (bow_barrel *doc_barrel, bow_wv *query_wv,
bow_score *bscores, int bscores_len,
int loo_class)
{
int num_classes = bow_barrel_num_classes (doc_barrel);
bow_dv_heap *heap;
int di, ci, num_scores;
bow_wv *wv;
double *scores; /* will become prob(class), indexed over CI */
bow_cdoc *cdoc;
int vocab_size = MIN(doc_barrel->wi2dvf->size, bow_num_words ());
int max_score_di, max_score_ci;
double max_score, score_increment;
int num_documents = doc_barrel->cdocs->length;
double *di_scores = alloca (num_documents * sizeof (double));
scores = alloca (num_classes * sizeof (double));
for (ci = 0; ci < num_classes; ci++)
scores[ci] = 0;
/* This implementation current assumes a uniform class prior.
Otherwise we would put in a class prior here. */
/* Loop over all training documents, measuring the distance
from the QUERY_WV to each of the training documents */
for (di = 0; di < num_documents; di++)
di_scores[di] = -DBL_MAX;
max_score = -DBL_MAX;
heap = bow_make_dv_heap_from_wi2dvf (doc_barrel->wi2dvf);
while ((di = bow_heap_next_wv (heap, doc_barrel, &wv,
bow_cdoc_is_train)) != -1)
{
/* DI is the index of the current training document. CDOC will contain
information about document DI. */
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
/* Here we get the class index of DI */
ci = cdoc->class;
/* WV is the word vector for DI */
score_increment = (bow_dirk_log_kernel (vocab_size, wv, query_wv));
di_scores[di] = score_increment;
if (score_increment > max_score)
{
max_score_di = di;
max_score_ci = ci;
max_score = score_increment;
}
if (di % 20 == 0)
printf ("di=%d ci=%d scores=%g\n", di, ci, score_increment);
//scores[ci] += score_increment;
}
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, max_score_di);
printf ("max di=%d ci=%d scores=%g\nfilename= %s",
max_score_di, max_score_ci, max_score,
cdoc->filename);
printf ("|d| = %g\n", bow_wv_weight_sum (query_wv));
/* Find the document with the maximum log-density, and add to all
document's log-densities to make them near zero. */
for (di = 0; di < num_documents; di++)
{
if (di_scores[di] != -DBL_MAX)
{
di_scores[di] -= max_score;
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
ci = cdoc->class;
if (di % 20 == 0)
printf ("di=%d ci=%d log-score=%g score=%g\n", di, ci,
di_scores[di], exp (di_scores[di]));
scores[ci] += exp (di_scores[di]);
}
}
#if 0
/* Normalize the SCORES[] distribution so that it sums to one */
{
double sum;
sum = 0;
for (ci = 0; ci < num_classes; ci++)
sum += scores[ci];
for (ci = 0; ci < num_classes; ci++)
scores[ci] /= sum;
}
#endif
/* Return the scores by putting them into BSCORES in sorted order */
num_scores = 0;
for (ci = 0; ci < num_classes; ci++)
{
/* Check that scores[ci] is not NaN */
assert (scores[ci] == scores[ci]);
if (num_scores < bscores_len
|| bscores[num_scores-1].weight < scores[ci])
{
/* We are going to put this score and CI into SCORES
because either: (1) there is empty space in SCORES, or
(2) SCORES[CI] is larger than the smallest score there
currently. */
int dsi; /* an index into SCORES */
if (num_scores < bscores_len)
num_scores++;
dsi = num_scores - 1;
/* Shift down all the entries that are smaller than SCORES[CI] */
for (; dsi > 0 && bscores[dsi-1].weight < scores[ci]; dsi--)
bscores[dsi] = bscores[dsi-1];
/* Insert the new score */
bscores[dsi].weight = scores[ci];
bscores[dsi].di = ci;
}
}
return num_scores;
}
bow_barrel *
bow_dirk_new_vpc (bow_barrel *doc_barrel)
{
return doc_barrel;
}
rainbow_method bow_method_dirk =
{
"dirk",
NULL,
0, /* no weight scaling function */
NULL, /* bow_barrel_normalize_weights_by_summing, */
bow_dirk_new_vpc,
bow_barrel_set_vpc_priors_by_counting,
bow_dirk_score,
bow_wv_set_weights_to_count,
NULL, /* no need for extra weight normalization */
bow_barrel_free,
NULL
};
void _register_method_dirk () __attribute__ ((constructor));
void _register_method_dirk ()
{
bow_method_register_with_name ((bow_method*)&bow_method_dirk,
"dirk",
sizeof (rainbow_method),
&dirk_argp_child);
bow_argp_add_child (&dirk_argp_child);
}
|