File: rainbow-stats.pl

package info (click to toggle)
bow 19991122-4
  • links: PTS
  • area: main
  • in suites: woody
  • size: 2,544 kB
  • ctags: 2,987
  • sloc: ansic: 38,660; lisp: 1,072; makefile: 594; perl: 492; yacc: 149; sh: 91
file content (287 lines) | stat: -rw-r--r-- 7,507 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
#!/usr/bin/perl
# The above line is modified by ./Makefile to match the system's
# installed location for Perl.

# Script to process the output from Andrew's rainbow program and produce
# useful summaries of the results. Feed the results intot stdin and 
# all the summaries will arrive on stdout
# Memory savings courtesy of Jason :)

# If you pass the `-s' command line argument, print only the accuracy
# average and standard deviation.

# setup some default values
$total_accuracy = 0.0;

# When this is zero, only print accuracy average and std.dev.
$verbosity = 1;

# Prune this regex from the end of classnames.
$prune_from_classname = "";

if ($#ARGV >= 0 && $ARGV[0] eq "-s") {
    $verbosity = 0;
    shift;
}

if ($#ARGV >= 0 && $ARGV[0] eq "-p") {
    $prune_from_classname = $ARGV[1];
    printf "Pruning `%s' from classnames\n", $prune_from_classname;
    shift; shift;
}

# Read in the first #
$line = <>;

$trial = 0;
while (&read_trial() != 0) {

    # OK - Lets start with accuracy
    &calculate_accuracy();

    # Now, how about a confusion matrix.
    &confusion();

    $trial++;

}

# Maybe some summary?
# We've had $trial trials

&overall_accuracy();

exit;

# generic sorting function
sub bystring 
{
    if ($a gt $b) { return 1; }
    elsif ($a eq $b) { return 0; }
    return -1;
}

# Function to read in the results for one trial into three arrays - @ids, 
# @actual_classifications and @predicted_classifications
# What is the English description of these?
# @ids - 
# @actual_classifications - 
# @predicted_classifications - 
sub read_trial {
    
    undef @ids;
    undef @actual_classifications;
    undef @predicted_classifications;
    undef %classes_to_codes;
    undef @codes_to_classes;
    $num_pages = 0;

    $do_sort = 1;
    while (($line = <>) && ($line !~ /^\#[0-9]+$/)) {
	
	chop $line;

	@line = split(' ', $line);

	# Remove the filename from @line and append it to @ids
	# push(@ids, shift @line);
	shift @line;
	$num_pages++;

	if (length ($prune_from_classname) > 0) {
	    # Remove $prune_from_classname from end of the actual classname
	    #printf ("Before: %s  ", $line[0]);
	    $pruning_regex = sprintf ("^(.+)%s\$", $prune_from_classname);
	    $line[0] =~ s,$pruning_regex,\1,;
	    #printf ("After: %s\n", $line[0]);

	    # Remove $prune_from_classname from end of the predicted classnames
	    $pruning_regex = 
		sprintf ("^(.+)%s(:[\.0-9e+\-]+)\$", $prune_from_classname);
	    for ($i = 1; $i < @line; $i++) {
	        #printf ("Before: %s  ", $line[$i]);
		$line[$i] =~ s,$pruning_regex,\1\2,;
	        #printf ("After: %s\n", $line[$i]);
	    }
	}

	# Ensure we have a code for the actual class
	if (grep(/^$line[0]$/, @codes_to_classes) == 0) {
	    $classes_to_codes{$line[0]} = @codes_to_classes;
	    push(@codes_to_classes, $line[0]);
	}

#	$pred_class = $line[0];
#	$pred_class =~ /^(.+):[\.0-9e+\-]+$/;

	# Make sure we have codes for everything
	foreach $pred (@line)
	{
	    if ($pred =~ /^(.+):[\.0-9e+\-]+$/)
	    {
		if (grep(/^$1$/, @codes_to_classes) == 0) {
		    $classes_to_codes{$1} = @codes_to_classes;
		    push(@codes_to_classes, $1);
		}
	    }
	}

	# order the classes according to their names
	if ($do_sort)
	{
	    @codes_to_classes = sort bystring @codes_to_classes;
	    for ($i=0; $i < @codes_to_classes; $i++)
	    {
		$classes_to_codes{$codes_to_classes[$i]} = $i;
	    }
	    $do_sort = 0;
	}
			    
#	$act_class = $line[0];
#	push(@actual_classifications, shift @line);
### Use integer codes instead of strings
	$class_label = shift @line;
	$class_id = $classes_to_codes{$class_label};
	push(@actual_classifications, $class_id);

#	push(@predicted_classifications, [ @line ]);
#	push(@predicted_classifications, shift @line);
### Use integer codes instead of strings
	$class_tag = shift @line;
	$class_tag =~ /^(.+):[\.0-9e+\-]+$/;
	$class_label = $1;
	$class_id = $classes_to_codes{$class_label};
	push(@predicted_classifications, $class_id);
    }

#    if (@ids > 0) {
    if ($num_pages > 0) {
	return 1;
    } else {
	return 0;
    }
}

# Function to take the three arrays and calculate the accuracy of the
# run
sub calculate_accuracy {
    if ($verbosity > 0) {
	print "Trial $trial\n\n";
    }
    # Initialize the variables in which we'll gather stats
    $correct = 0;
    $total = 0;

#    for ($i = 0; $i < @ids; $i++) {
    for ($i = 0; $i < $num_pages; $i++) {
#	$predicted_classifications[$i][0] =~ /^(.+):[\.0-9e+\-]+$/;
#	$predicted_classifications[$i] =~ /^(.+):[\.0-9e+\-]+$/;
	if ($actual_classifications[$i] == $predicted_classifications[$i]) {
	    $correct++;
	}
	$total++;
    }

    $accuracy = ($correct * 100) / $total;
    $trial_accuracy[$trial] = $accuracy;
    $total_accuracy += $accuracy;
    if ($verbosity > 0) {
	printf ("Correct: %d out of %d (%.2f percent accuracy)\n",
		$correct, $total, $accuracy);
    }
}

sub overall_accuracy {
    # Calculte the overall (overall) accuracy
    $overall_accuracy = $total_accuracy / $trial;

    # Calculate the standard deviation of Overall Accuracy
    $overall_accuracy_stddev = 0;
    for ($i = 0; $i < $trial; $i++) {
	$diff_from_mean = $overall_accuracy - $trial_accuracy[$i];
	$overall_accuracy_stddev += $diff_from_mean * $diff_from_mean;
    }
    $overall_accuracy_stddev = sqrt ($overall_accuracy_stddev / $trial);

    if ($verbosity > 0) {
	printf ("Percent_Accuracy  average %.2f stderr %.2f\n", 
		$overall_accuracy, 
		$overall_accuracy_stddev / sqrt($trial));
    } else {
	printf ("%.2f %.2f\n", 
		$overall_accuracy, 
		$overall_accuracy_stddev / sqrt($trial));
    }
}

# Function to produce a confusion matrix from the data
sub confusion {
    
    undef @confusion;
    my $total_predicted;

    if (! $verbosity > 0) {
	return;
    }

    print "\n - Confusion details, row is actual, column is predicted\n";
    # Loop over all the examples
#    for ($i = 0; $i < @ids; $i++) {
    for ($i = 0; $i < $num_pages; $i++) {

#	$actual = $actual_classifications[$i];
#	$actual_code = $classes_to_codes{$actual};
	$actual_code = $actual_classifications[$i];

#	$predicted_classifications[$i][0] =~ /^(.+):[\.0-9e+\-]+$/;
#	$predicted_classifications[$i] =~ /^(.+):[\.0-9e+\-]+$/;
#	$predicted_code = $classes_to_codes{$1};
	$predicted_code = $predicted_classifications[$i];

	$confusion[$actual_code][$predicted_code] += 1;
    }

    # Get the maximum classname length, so we know how much space
    # to allow for it in the formatting.
    $max_classname_length = length ("classname");
    for ($i = 0; $i < @codes_to_classes; $i++) {
	$classname_length = length ($codes_to_classes[$i]);
	if ($classname_length > $max_classname_length) {
	    $max_classname_length = $classname_length;
	}
    }

    # Print out a header for the matrix
    printf ("   %${max_classname_length}s ", "classname");
    for ($i = 0; $i < @codes_to_classes; $i++) {
	printf ("%3d ", $i);	
    }
    print " :total\n";

    # Now print out the matrix
    for ($i = 0; $i < @codes_to_classes; $i++) {
	printf ("%2d %${max_classname_length}s ", 
		$i, $codes_to_classes[$i]);
	$total_predicted = 0;

	for ($j = 0; $j < @codes_to_classes; $j++) {
	    if ($confusion[$i][$j] == 0) {
		printf ("%3s ", ".");
	    } else {
		printf ("%3d ", $confusion[$i][$j]);
	    }
	    $total_predicted += $confusion[$i][$j];
	}
	if ($total_predicted > 0) {
	    printf (" :%3d %6.2f%%", 
		    $total_predicted, 
		    100 * $confusion[$i][$i] / $total_predicted);
	} else {
	    printf (" :%3s", ".");
	}
	print "\n";
    }
    print "\n";
}