1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714
|
/* Copyright (C) 1999 Greg Schohn - gcs@jprc.com */
/* ******************** svm_al.c *******************
* Active learning add-ons for SVM's. */
#include <bow/svm.h>
#define NDIM_INSPECTED 14
int dim_map(int i) {
static int map[] = {1,2,3,4,6,8,12,16,24,32,48,64,128,256};
return (map[i]);
}
/* compute the prec. recall breakeven point shifting the value of b */
double prec_recall_breakeven(double *test_evals, int *test_yvect, int n, int total_pos) {
struct di *ey;
double max;
int npos;
int i;
ey = (struct di *) malloc(sizeof(struct di)*n);
for (i=0; i<n; i++) {
ey[i].d = -1*test_evals[i]; /* -1 is to force the sort the way i want it */
ey[i].i = test_yvect[i];
}
qsort(ey,n,sizeof(struct di),di_cmp);
max = -1.0;
for (i=npos=0; i<n; i++) {
double min;
if (ey[i].i > 0) {
npos ++;
}
min = MIN(((double)npos)/(i+1), ((double)npos)/total_pos);
if (min > max) {
max = min;
}
}
free(ey);
return max;
}
/*
(docs, NULL, yvect, NULL, weights, b, W, 7
ndocs, 0, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, 10
NULL, NULL, NULL, NULL, 0, NULL, NULL, do_rlearn)
*/
struct al_test_data {
int ntest;
int ndim_sat;
int *docs_added;
int *test_yvect, *apvect, *anvect;
int *nsv_vect, *nbsv_vect, *time_vect, *nkce_vect;
int *npos_added, *nneg_added;
double *prb, *scores_added;
int **sv_dim_sat_vect, **train_dim_sat_vect;
double **test_scores;
bow_wv **test_docs;
};
/* this fn. does active learning by selecting which docs to pass into
* the svm solver (smo or not)... */
/* most of the code & arguments are for logging & testing */
int al_svm_guts(bow_wv **train_docs, int *train_yvect, double *weights,
double *b, bow_wv **W_wv, int ndocs, struct al_test_data *astd,
int do_random_learning) {
int dec;
int last_subndocs;
int nleft;
int nsv;
int num_words;
int *old_svbitmap;
int qsize; /* query size, size of chunks to grow training set by */
int remove_wrong;
struct di *train_scores, *train_cscores;
int *train_sat_vect;
int *sv_sat_vect; /* shows how many */
bow_wv **sub_docs; /* those docs that should be learned upon */
int sub_ndocs;
double *sub_weights;
int *sub_yvect;
double tb;
int *tdocs; /* translation table */
double *tvals;
double *W;
int *used; /* bitmap of those elements being learned */
int i,j,k,n,nloop;
sub_ndocs = MIN(ndocs,svm_init_al_tset);
sub_docs = (bow_wv **) malloc(sizeof(bow_wv *)*ndocs);
sub_weights = (double *) malloc(sizeof(double)*ndocs);
sub_yvect = (int *) malloc(sizeof(int)*ndocs);
train_scores = (struct di *) malloc(sizeof(struct di)*ndocs);
tdocs = (int *) malloc(sizeof(int)*ndocs);
tvals = (double *) malloc(sizeof(double)*ndocs);
used = (int *) malloc((ndocs+7)/8);
num_words = bow_num_words();
/* this is for accounting/experiments */
if (astd->sv_dim_sat_vect) {
train_sat_vect = (int *) malloc(sizeof(int)*num_words);
} else {
train_sat_vect = NULL;
}
astd->ndim_sat = NDIM_INSPECTED;
if (astd->train_dim_sat_vect) {
old_svbitmap = (int *) malloc((ndocs+7)/8);
sv_sat_vect = (int *) malloc(sizeof(int)*num_words);
} else {
old_svbitmap = (int *) malloc((ndocs+7)/8);
sv_sat_vect = (int *) malloc(sizeof(int)*num_words);
}
if (svm_remove_misclassified) {
remove_wrong = 1;
svm_remove_misclassified = 0;
} else {
remove_wrong = 0;
}
/* initialize... */
nsv = 0;
memset(used, 0, (ndocs+7)/8);
for (i=0; i<ndocs; i++) {
sub_weights[i] = weights[i] = 0.0;
if (!svm_use_smo) {
tvals[i] = 0.0;
}
}
/* initialize accounting stuff */
if (sv_sat_vect) {
memset(old_svbitmap, 0, (ndocs+7)/8);
for (i=0; i<num_words; i++) {
sv_sat_vect[i] = 0.0;
}
}
if (train_sat_vect) {
for (i=0; i<num_words; i++) {
train_sat_vect[i] = 0.0;
}
}
qsize = svm_al_qsize;
/* select an initial set of things to classify */
/* the following is equivalent to asking the user to classify 1/2 the
* documents as positive & the other half as negative */
for (k=-1, i=0, n=sub_ndocs/2; k<2; n=sub_ndocs,k=k+2) {
for (j=0; i<n && j<ndocs; j++) {
if (train_yvect[j] != k) {
continue;
}
SETVALID(used,j);
tdocs[i] = j;
sub_yvect[i] = train_yvect[j];
sub_docs[i] = train_docs[j];
if (svm_use_smo) {
tvals[i] = -1*train_yvect[j];
}
i++;
}
}
sub_ndocs = i;
last_subndocs = 0;
for (nloop=0; ;nloop++) {
struct tms t1, t2;
int changed;
/* this is done at the beginning of the loop so that the base case
(ie. after initial set) works too... */
if (astd->npos_added && astd->nneg_added) {
astd->npos_added[nloop] = 0;
astd->nneg_added[nloop] = 0;
for (i=last_subndocs; i<sub_ndocs; i++) {
if (sub_yvect[i] == 1) {
astd->npos_added[nloop] ++;
} else {
astd->nneg_added[nloop] ++;
}
}
}
/* add the document indices */
if (astd->docs_added) {
for (i=last_subndocs; i<sub_ndocs; i++) {
astd->docs_added[i] = tdocs[i];
}
}
if (train_sat_vect) {
for (i=last_subndocs; i<sub_ndocs; i++) {
for (j=0; j<sub_docs[i]->num_entries; j++) {
train_sat_vect[sub_docs[i]->entry[j].wi] ++;
}
}
}
fprintf(stderr,"\r%dth AL iteration",nloop);
svm_nkc_calls = 0;
times(&t1);
if (svm_use_smo) {
changed = smo(sub_docs, sub_yvect, sub_weights, &tb, &W, sub_ndocs, tvals, &nsv);
} else {
#ifdef HAVE_LOQO
changed = build_svm_guts(sub_docs, sub_yvect, sub_weights, &tb, &W, sub_ndocs, tvals, &nsv);
#else
fprintf(stderr, "Cannot build model using loqo solver, rebuild with pr_loqo,"
" use the smo solver\n");
#endif
}
times(&t2);
/* a couple of accounting things that are independent of a test/validation set */
if (astd->time_vect)
astd->time_vect[nloop] = (int) (t2.tms_utime - t1.tms_utime + t2.tms_stime - t1.tms_stime);
if (astd->nsv_vect)
astd->nsv_vect[nloop] = nsv;
if (astd->nbsv_vect) {
astd->nbsv_vect[nloop] = 0;
for (j=0; j<sub_ndocs; j++) {
if (sub_weights[j] >= svm_C - svm_epsilon_a)
astd->nbsv_vect[nloop] ++;
}
}
if (astd->nkce_vect)
astd->nkce_vect[nloop] = svm_nkc_calls;
/* find the next example that is closest to the hyperplane that we just found */
/* the scores need to be recalculated if any of the weights changed... */
if (changed) {
train_cscores = train_scores;
if (svm_kernel_type == 0) {
for (j=nleft=0; j<ndocs; j++) {
if (!GETVALID(used,j)) {
train_scores[nleft].d = fabs(evaluate_model_hyperplane(W, tb, train_docs[j]));
train_scores[nleft].i = j;
nleft ++;
}
}
} else {
for (j=k=nleft=0; j<ndocs; j++) {
if (!GETVALID(used,j)) {
train_scores[nleft].d = fabs(evaluate_model_cache(sub_docs, sub_weights, sub_yvect, tb, train_docs[j], nsv));
train_scores[nleft].i = j;
nleft ++;
}
}
}
/* lets figure out the change in fdim saturation... */
if (sv_sat_vect) {
for (i=0; i<sub_ndocs; i++) {
if ((sub_weights[i] == 0.0) && (GETVALID(old_svbitmap,i))) {
SETINVALID(old_svbitmap,i);
for (j=0; j<sub_docs[i]->num_entries; j++) {
sv_sat_vect[sub_docs[i]->entry[j].wi] --;
}
} else if ((sub_weights[i] != 0.0) && (!GETVALID(old_svbitmap,i))) {
SETVALID(old_svbitmap,i);
for (j=0; j<sub_docs[i]->num_entries; j++) {
sv_sat_vect[sub_docs[i]->entry[j].wi] ++;
}
}
}
/* this could be smarter - but it would involve more arrays... */
/* update the history vector... */
for (i=0; i<astd->ndim_sat; i++) {
astd->sv_dim_sat_vect[i][nloop] = 0;
}
for (j=0; j<num_words; j++) {
for (i=0; sv_sat_vect[j]>=dim_map(i) && i<astd->ndim_sat; i++) {
astd->sv_dim_sat_vect[i][nloop] ++;
}
}
}
if (astd->train_dim_sat_vect) {
for (i=0; i<astd->ndim_sat; i++) {
astd->train_dim_sat_vect[i][nloop] = 0;
}
for (j=0; j<num_words; j++) {
for (i=0; train_sat_vect[j]>=dim_map(i) && i<astd->ndim_sat; i++) {
astd->train_dim_sat_vect[i][nloop] ++;
}
}
}
/* now lets find the accuracy... */
if (astd->prb) {
int npos;
double *test_evals = (double *) malloc(sizeof(double)*astd->ntest);
astd->anvect[nloop] = astd->apvect[nloop] = 0;
if (svm_kernel_type == 0) {
for (j=0; j<astd->ntest; j++) {
test_evals[j] = evaluate_model_hyperplane(W, tb, astd->test_docs[j]);
}
} else {
for (j=0; j<astd->ntest; j++) {
test_evals[j] = evaluate_model(sub_docs, sub_weights, sub_yvect,
tb, astd->test_docs[j], nsv);
}
}
if (astd->test_scores) {
for (j=0; j<astd->ntest; j++) {
astd->test_scores[nloop][j] = test_evals[j];
}
}
for (j=npos=0; j<astd->ntest; j++) {
if (astd->test_yvect[j] * test_evals[j] > 0.0) {
if (astd->test_yvect[j] == -1)
astd->anvect[nloop] ++;
else
astd->apvect[nloop] ++;
}
if (astd->test_yvect[j] > 0) {
npos ++;
}
}
/* precision recall breakevens too */
astd->prb[nloop] = prec_recall_breakeven(test_evals, astd->test_yvect,
astd->ntest, npos);
free(test_evals);
}
} else {
/* we can use the scores that we got last time (they'll still be the same) - just
* remove the previous ones from the scores array... */
/* since nothing changed, we don't need to recalculate the test accuracy */
if (astd->prb) {
astd->apvect[nloop] = astd->apvect[nloop-1];
astd->anvect[nloop] = astd->anvect[nloop-1];
astd->prb[nloop] = astd->prb[nloop-1];
}
if (astd->train_dim_sat_vect) {
for (i=0; i<astd->ndim_sat; i++) {
astd->train_dim_sat_vect[i][nloop] = astd->train_dim_sat_vect[i][nloop-1];
}
}
if (astd->sv_dim_sat_vect) {
for (i=0; i<astd->ndim_sat; i++) {
astd->sv_dim_sat_vect[i][nloop] = astd->sv_dim_sat_vect[i][nloop-1];
}
}
if (astd->test_scores) {
for (i=0; i<astd->ntest; i++) {
astd->test_scores[nloop][i] = astd->test_scores[nloop-1][i];
}
}
/* this code doesn't get touched till after stuff was added
* (ie. ignore gcc's warnings about uninitialized memory) */
nleft -= dec;
train_cscores = &(train_cscores[dec]);
}
if (sub_ndocs == ndocs) {
break;
}
/* now use the scores (& possibly other things) to chose the next examples to learn */
if (nleft < qsize) {
dec = nleft;
} else {
dec = qsize;
}
/* do this even if nleft<qsize to find the min... */
if (!do_random_learning) {
get_top_n(train_cscores, nleft, dec);
}
/* this is where the termination criteria goes - right now its pretty dumb... */
/* (it would be a fn, but since bookkeeping & setting up need to go on in here
* anyway, the crux also does */
if ((train_cscores[0].d > 1) && (0)) {
break;
}
for (j=0; j<dec; j++) {
SETVALID(used, train_cscores[j].i);
tdocs[sub_ndocs+j] = train_cscores[j].i;
sub_docs[sub_ndocs+j] = train_docs[train_cscores[j].i];
sub_yvect[sub_ndocs+j] = train_yvect[train_cscores[j].i];
if (astd->scores_added)
astd->scores_added[sub_ndocs+j] = train_cscores[j].d;
}
last_subndocs = sub_ndocs;
if (svm_use_smo) {
struct svm_smo_model model;
model.docs = sub_docs;
model.ndocs = sub_ndocs;
model.weights = sub_weights;
model.yvect = sub_yvect;
model.W = W;
for (j=0; j<dec; j++) {
tvals[sub_ndocs] += smo_evaluate_error(&model, sub_ndocs) - tb;
sub_ndocs ++;
}
} else {
int n;
for (n=0; n<dec; n++) {
for (j=k=0; k<nsv; j++) {
if (sub_weights[j] != 0.0) {
tvals[sub_ndocs] += sub_weights[j] * sub_yvect[j] *
svm_kernel_cache(sub_docs[sub_ndocs],sub_docs[j]);
k++;
}
}
sub_ndocs++;
}
}
if (svm_kernel_type == 0) {
free(W);
}
}
printf("Queried for a total of %d labels.\n",sub_ndocs);
/* once the active learning is done, the inconsistent examples may be removed */
if (remove_wrong) {
svm_remove_misclassified = 1;
fprintf(stderr,"Running again to remove inconsistent examples.\n");
if (svm_use_smo) {
nsv = smo(sub_docs, sub_yvect, sub_weights, &tb, &W, sub_ndocs, tvals, &nsv);
} else {
#ifdef HAVE_LOQO
nsv = build_svm_guts(sub_docs, sub_yvect, sub_weights, &tb, &W, sub_ndocs, tvals, &nsv);
#else
printf("Must build rainbow with pr_loqo to use this solver!\n");
#endif
}
}
free(train_scores);
free(sub_docs);
free(sub_yvect);
free(tvals);
free(used);
free(sv_sat_vect);
free(old_svbitmap);
if (svm_kernel_type == 0) {
for (i=j=0; i<num_words; i++) {
if (W[i] != 0.0)
j++;
}
(*W_wv) = bow_wv_new(j);
for (i=j=0; j<(*W_wv)->num_entries; i++) {
if (W[i] != 0.0) {
(*W_wv)->entry[j].wi = i;
(*W_wv)->entry[j].count = 1; /* just so that an assertion doesn't throw up later */
(*W_wv)->entry[j].weight = W[i];
j++;
}
}
free(W);
}
/* fill everything back in - including the weight vector in the order that the
* caller is expecting... */
for (i=0; i<sub_ndocs; i++) {
/* if we haven't looked at it (ie. not present in tdocs), then we won't
* reset it & it was already initialized to 0... */
weights[tdocs[i]] = sub_weights[i];
}
free(tdocs);
free(sub_weights);
*b = tb;
return nsv;
}
/* this cuts up the training set into training & validation */
int al_svm_test_wrapper(bow_wv **docs, int *yvect, double *weights, double *b,
bow_wv **W, int ndocs, int do_ts, int do_random_learning) {
struct al_test_data altd;
int max_iter;
bow_wv **train_docs;
int *train_y;
int ntrain;
int nsv;
int *permute_table;
int tp, tn;
int i,j,k;
ntrain = altd.ntest = 0;
if (svm_random_seed == 0) {
svm_random_seed = (int) time(NULL);
printf("random seed to chop test/train split: %d\n",svm_random_seed);
fprintf(stderr,"random seed to chop test/train split: %d\n",svm_random_seed);
}
srandom(svm_random_seed);
permute_table = (int *) malloc(sizeof(int)*ndocs);
svm_permute_data(permute_table, docs, yvect, ndocs);
/* lets try to bring some lesser determinism back... */
srandom((int) time(NULL));
ntrain = ndocs/2;
altd.ntest = ndocs - ntrain;
train_docs = docs;
train_y = yvect;
altd.test_docs = &(docs[ntrain]);
altd.test_yvect = &(yvect[ntrain]);
max_iter = ((ntrain+svm_al_qsize-1) / svm_al_qsize) + 1;
altd.apvect = (int *) malloc(sizeof(int)*max_iter);
altd.anvect = (int *) malloc(sizeof(int)*max_iter);
altd.nsv_vect = (int *) malloc(sizeof(int)*max_iter);
altd.nbsv_vect = (int *) malloc(sizeof(int)*ntrain);
altd.prb = (double *) malloc(sizeof(double)*max_iter);
altd.nkce_vect = (int *) malloc(sizeof(int)*max_iter);
altd.time_vect = (int *) malloc(sizeof(int)*max_iter);
if (do_ts) {
altd.test_scores = (double **) malloc(sizeof(double *)*max_iter);
for (i=0; i<max_iter; i++) {
altd.test_scores[i] = (double *) malloc(sizeof(double)*altd.ntest);
}
} else {
altd.test_scores = NULL;
}
altd.npos_added = (int *) malloc(sizeof(int)*max_iter+1);
altd.nneg_added = (int *) malloc(sizeof(int)*max_iter+1);
altd.docs_added = (int *) malloc(sizeof(int)*ntrain);
altd.scores_added = (double *) malloc(sizeof(double)*ntrain);
for (i=0; i<ntrain; i++) {
altd.scores_added[i] = 0.0;
}
memset(altd.apvect, -1, max_iter*sizeof(int));
memset(altd.anvect, -1, max_iter*sizeof(int));
altd.sv_dim_sat_vect = (int **) malloc(NDIM_INSPECTED*sizeof(int *));
altd.train_dim_sat_vect = (int **) malloc(NDIM_INSPECTED*sizeof(int *));
for(i=0; i<NDIM_INSPECTED; i++) {
altd.sv_dim_sat_vect[i] = (int *) malloc(sizeof(int)*max_iter);
altd.train_dim_sat_vect[i] = (int *) malloc(sizeof(int)*max_iter);
}
nsv = al_svm_guts(train_docs, train_y, weights, b, W, ntrain,
&altd, do_random_learning);
for (i=tp=tn=0; i<altd.ntest; i++) {
if (altd.test_yvect[i] == 1) {
tp ++;
} else {
tn ++;
}
}
printf("%d positive test documents, %d negative test documents.\npositive accuracy vector: ",tp,tn);
for (i=0; (altd.apvect[i]>=0) && i < max_iter; i++) {
printf(" %d", altd.apvect[i]);
}
printf("\nnegative accuracy vector: ");
for (j=0; j<i; j++) {
printf(" %d", altd.anvect[j]);
}
printf("\nprecision/recall breakeven vector: ");
for (j=0; j<i; j++) {
printf(" %f", altd.prb[j]);
}
{
int k;
int start_index= MIN(ntrain, svm_init_al_tset);
printf("\n\"Real\" document indices when added: ");
printf("0(%d",permute_table[altd.docs_added[0]]);
for (k=1; k<start_index; k++) {
printf(",%d",permute_table[altd.docs_added[k]]);
}
printf(") ");
for (j=0; j<i-1; j++) {
printf("%d(%d",j+1,permute_table[altd.docs_added[j*svm_al_qsize+start_index]]);
for (k=1; k<svm_al_qsize && k+j*svm_al_qsize+start_index<ntrain; k++) {
printf(",%d",permute_table[altd.docs_added[j*svm_al_qsize+start_index+k]]);
}
printf(") ");
}
printf("\nminimum scores of documents when added: ");
for (j=0; j<i-1; j++) {
printf(" %f", altd.scores_added[j*svm_al_qsize+svm_init_al_tset]);
}
printf("\naverage scores of documents when added: ");
for (j=0; j<i-1; j++) {
double avg = 0.0;
for (k=0; k<svm_al_qsize && k+j*svm_al_qsize+svm_init_al_tset<ntrain; k++) {
avg += altd.scores_added[j*svm_al_qsize+k+svm_init_al_tset];
}
printf(" %f", avg/k);
}
}
printf("\nnumber of positive documents inspected: ");
for (j=0; j<i; j++) {
printf(" %d", altd.npos_added[j]);
}
printf("\nnumber of negative documents inspected: ");
for (j=0; j<i; j++) {
printf(" %d", altd.nneg_added[j]);
}
printf("\nnumber of support vectors: ");
for (j=0; j<i; j++) {
printf(" %d", altd.nsv_vect[j]);
}
printf("\nnumber of bounded support vectors: ");
for (j=0; j<i; j++) {
printf(" %d", altd.nbsv_vect[j]);
}
printf("\nrunning times: ");
for (j=0; j<i; j++) {
printf(" %d", altd.time_vect[j]);
}
printf("\nkernel_cache calls: ");
for (j=0; j<i; j++) {
printf(" %d", altd.nkce_vect[j]);
}
for (k=0; k<NDIM_INSPECTED; k++) {
/* following is only good if the 0'th # of dimensions == 1 */
int num_words = altd.train_dim_sat_vect[0][i-1];
printf("\nnumber of SV dimensions with more than %d elements (%d total dimensions): ", dim_map(k), num_words);
for (j=0; j<i; j++) {
printf(" %d", altd.sv_dim_sat_vect[k][j]);
}
}
for (k=0; k<NDIM_INSPECTED; k++) {
int num_words = altd.train_dim_sat_vect[0][i-1];
printf("\nnumber of train dimensions with more than %d elements (%d total dimensions): ", dim_map(k), num_words);
for (j=0; j<i; j++) {
printf(" %d", altd.train_dim_sat_vect[k][j]);
}
}
if (do_ts) {
printf("\nbegin score matrix:");
for (j=0; j<i; j++) {
int k;
printf("\n");
for (k=0; k<altd.ntest; k++) {
printf(" %.3f", altd.test_scores[j][k]);
}
}
printf("\nend score matrix\n");
for (i=0; i<max_iter; i++) {
free(altd.test_scores[i]);
}
free(altd.test_scores);
} else {
printf("\n");
}
free(altd.apvect);
free(altd.anvect);
free(altd.prb);
free(altd.nsv_vect);
free(altd.nbsv_vect);
free(altd.time_vect);
free(altd.sv_dim_sat_vect);
free(altd.train_dim_sat_vect);
free(altd.nkce_vect);
svm_unpermute_data(permute_table, docs, yvect, ndocs);
free(permute_table);
return nsv;
}
int al_svm(bow_wv **docs, int *yvect, double *weights, double *b, bow_wv **W,
int ndocs, int do_rlearn) {
struct al_test_data altd;
bzero(&altd,sizeof(struct al_test_data));
return (al_svm_guts(docs, yvect, weights, b, W, ndocs, &altd, do_rlearn));
}
|