File: svm_base.c

package info (click to toggle)
bow 19991122-4
  • links: PTS
  • area: main
  • in suites: woody
  • size: 2,544 kB
  • ctags: 2,987
  • sloc: ansic: 38,660; lisp: 1,072; makefile: 594; perl: 492; yacc: 149; sh: 91
file content (2277 lines) | stat: -rw-r--r-- 64,945 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
/* Copyright (C) 1999 Greg Schohn - gcs@jprc.com */

/* "main" file for all of the svm related code - any svm stuff should
 * pass through some function here */
#include <bow/svm.h>

#if !HAVE_SQRTF
#define sqrtf sqrt
#endif

#define BARREL_GET_MAX_NSV(barrel) (*((int *) &((GET_CDOC_ARRAY_EL(barrel,0))->normalizer)))
#define BARREL_GET_NCLASSES(barrel) (*((int *) &((GET_CDOC_ARRAY_EL(barrel,0))->prior)))
#define BARREL_GET_NMETA_DOCS(barrel) (*((int *) &((GET_CDOC_ARRAY_EL(barrel,1))->normalizer)))

#define KERNEL_TYPE                    14001
#define WEIGHT_TYPE                    14002
#define COST_TYPE                      14003
#define EA_TYPE                        14004
#define BSIZE_TYPE                     14005
#define VOTE_TYPE                      14006
#define CACHE_SIZE_ARG                 14007
#define QUICK_SCORE                    14008
#define DF_COUNTS_ARG                  14009
#define REMOVE_MISCLASS_TYPE           14010
#define TF_TRANSFORM_TYPE              14011
#define USE_SMO_ARG                    14012
#define CNAME_ARG                      14013
#define LNAME_ARG                      14014
#define DO_ACTIVE_LEARNING             14015
#define ACTIVE_LEARNING_CHUNK_SIZE_ARG 14016
#define TEST_IN_TRAIN_ARG              14017
#define BASELINE_AL                    14018
#define START_AT_ARG                   14019
#define RANDOM_SEED_ARG                14020
#define SUPPRESS_SCORE_MAT_ARG         14021
#define INITIAL_AL_TSET_ARG            14022
#define TRANSDUCE_CLASS_ARG            14023
#define TRANS_CSTAR_ARG                14024
#define TRANS_NPOS_ARG                 14025
#define SVM_BASENAME_ARG               14026

#define AGAINST_ALL 0
#define PAIRWISE    1

static int weight_type=RAW;   /* 0=raw_freq, 1=tfidf, 2=infogain */
static int tf_transform_type=RAW;  /* 0=raw, 1=log, 2?... */
static int vote_type=0;
static int cache_size=4000037;
static int quick_scoring=1;
static int do_active_learning=0;
static int test_in_train=0;
static int suppress_score_mat=0;
static int al_pick_random=0;
static int model_starting_no=0;
static int transduce_class=(1 << bow_doc_unlabeled);
static int transduce_class_overriding=0; /* gets set to 1 when args are 
					  * passed to override */
static int svm_trans_npos;
static double svm_trans_cstar;
static char *svml_basename=NULL;
FILE *svml_test_file=NULL;

#ifdef HAVE_LOQO
int svm_use_smo=0;
#else
int svm_use_smo=1;
#endif


double svm_epsilon_a=1E-12;       /* for alpha's & there bounds */
double svm_epsilon_crit=INIT_KKT; /* for critical KT points */
double svm_C=1000.0;              /* maximum cost */

int svm_bsize=4;               /* sizeof working set */
int svm_kernel_type=0;          /* 0=linear */
int svm_remove_misclassified=0;
int svm_weight_style;
int svm_nkc_calls;

int svm_init_al_tset=8;
int svm_al_qsize;

int svm_random_seed=0; /* for al - gets filled in with time */
int svm_verbosity=0;

/* for tfidf scoring - they could (should?) be made into options... */
static int df_transform=LOG;
static int df_counts=bow_tfidf_occurrences;

/* these are dangerous optimizations for svm_score... - but they save a lot of time... */
/* dangerous because they waste a lot of memory (about the size of the original barel)
 * & if the vpc barrel gets played with, then its all wrong & there's no totally
 * error proof way to do that without checking all of the barrel, which i don't do. */
struct model_bucket {
  bow_wv    **docs;
  float     **oweights;  /* original weights (after norm & tf scaling) 
			    note - this only matters when tf_transform is set &
			    some weight_per_model scheme is used */
  /* note - these are regular vectors instead of wv's to save time 
   * (O(# qwv features) instead of O((# qwv features) + (# of features)) */
  union {
    float **sub_model; /* weights for submodels */
    float  *barrel;     /* weights for the whole barrel */
  } word_weights;
  double     *bvect;
  int       **indices;
  int        *sizes;    /* length of each array */
  double    **weights;
  double    **W;
  int       **yvect;
  bow_barrel *barrel;
  int         ndocs;
  int         nmodels;
};

static struct model_bucket model_cache = {NULL, NULL, {NULL}, NULL, NULL, NULL, 
					  NULL, NULL, NULL, 0, 0};

double dprod(bow_wv *wv1, bow_wv *wv2);
double kernel_poly(bow_wv *wv1, bow_wv *wv2);
double kernel_rbf(bow_wv *wv1, bow_wv *wv2);
double kernel_sig(bow_wv *wv1, bow_wv *wv2);

/* by default use the dot product as the kernel */
static double (*kernel)(bow_wv *, bow_wv *) = dprod;

/* Command-line options specific to SVMs */
static struct argp_option svm_options[] = {
  {0,0,0,0,
   "Support Vector Machine options, --method=svm:", 50},
  {"svm-kernel", KERNEL_TYPE, "", 0,
   "type of kernel to use (0=linear, 1=polynomial, 2=gassian, 3=sigmoid, 4=fisher kernel)."},
  {"svm-remove-misclassified", REMOVE_MISCLASS_TYPE, 0, 0,
   "Remove all of the misclassified examples and retrain."},
  {"svm-weight", WEIGHT_TYPE, "", 0,
   "type of function to use to set the weights of the documents' words "
   "(0=raw_frequency, 1=tfidf, 2=infogain."},
  {"svm-tf-transform", TF_TRANSFORM_TYPE, "", 0,
   "0=raw, 1=log..."},
  {"svm-epsilon_a", EA_TYPE, "", 0,
   "tolerance for the bounds of the lagrange multipliers (default 0.0001)."},
  {"svm-cost", COST_TYPE, "", 0,
   "cost to bound the lagrange multipliers by (default 1000)."},
  {"svm-bsize", BSIZE_TYPE, "", 0,
   "maximum size to construct the subproblems."},
  {"svm-vote", VOTE_TYPE, "", 0,
   "Type of voting to use (0=singular, 1=pairwise; default 0)."},
  {"svm-cache-size", CACHE_SIZE_ARG, "", 0,
   "Number of kernel evaluations to cache."},
  {"svm-quick-scoring", QUICK_SCORE, 0, 0,
   "Turn quick scoring on."},
  {"svm-active-learning", DO_ACTIVE_LEARNING, "", 0,
   "Use active learning to query the labels & incrementally (by arg_size) build the barrels."},
  {"svm-al_init_tsetsize", INITIAL_AL_TSET_ARG, "", 0,
   "Number of random documents to start with in active learning."},
  {"svm-active-learning-baseline", BASELINE_AL, "", 0,
   "Incrementally add documents to the training set at random."},
  {"svm-test-in-train", TEST_IN_TRAIN_ARG, 0, 0,
   "do active learning testing inside of the training...  a hack "
   "around making code 10 times more complicated."},
  {"svm-suppress-score-matrix", SUPPRESS_SCORE_MAT_ARG, 0, 0,
   "Do not print the scores of each test document at each AL iteration."},
  {"svm-df-counts", DF_COUNTS_ARG, "", 0,
   "Set df_counts (0=occurrences, 1=words)."},
  {"svm-start-at", START_AT_ARG, "", 0,
   "which model should be the first generated."},
  {"svm-transduce-class", TRANSDUCE_CLASS_ARG, "", 0,
   "override default class(es) (int) to do transduction with "
   "(default bow_doc_unlabeled)."},
  {"svm-trans-cost", TRANS_CSTAR_ARG, "", 0,
   "value to assign to C* (default 200)."},
  {"svm-trans-npos", TRANS_NPOS_ARG, "", 0,
   "number of unlabeled documents to label as positive "
   "(default: proportional to number of labeled positive docs)."},
  {"svm-rseed", RANDOM_SEED_ARG, "", 0,
   "what random seed should be used in the test-in-train splits"},
  {"svml-basename", SVM_BASENAME_ARG, "", OPTION_HIDDEN,
   ""},
  {"svm-use-smo", USE_SMO_ARG, "", 0,
#ifdef HAVE_LOQO
   "default 0 (don't use SMO)"
#else 
   "default 1 (use SMO) - PR_LOQO not compiled"
#endif
  },
  {0, 0}
};

union kern_param {
  struct {
    double const_co;
    double lin_co;
    double degree;
  } poly ;
  struct {
    double gamma;
  } rbf;
  struct {
    double const_co;
    double lin_co;
  } sig;
};

union kern_param kparm;

error_t svm_parse_opt (int key, char *arg, struct argp_state *state) {
  switch (key) {
  case START_AT_ARG:
    model_starting_no = atoi(arg);
    break;
  case KERNEL_TYPE:
    svm_kernel_type = atoi (arg);
    if (svm_kernel_type > 4) {
      fprintf(stderr, "Invalid value for -k, value must be between 0, 1, 2, 3, or 4.\n");
      return ARGP_ERR_UNKNOWN;
    }
    switch (svm_kernel_type) {
    case 0:
      kernel = dprod;
      break;
    case 1:
      kparm.poly.const_co = 1.0;
      kparm.poly.lin_co = 1.0;
      kparm.poly.degree = 4.0;
      kernel = kernel_poly;
      break;
    case 2:
      kparm.rbf.gamma = 1.0;
      kernel = kernel_rbf;
      break;
    case 3:
      kparm.sig.lin_co = 1.0;
      kparm.sig.const_co = 0.0;
      kernel = kernel_sig;
      break;
    case 4:
      kernel = svm_kernel_fisher;
      break;
    default:
    }
    break;
  case EA_TYPE:
    svm_epsilon_a = atof(arg);
    break;
  case BSIZE_TYPE:
    svm_bsize = atoi(arg);
    if (svm_bsize < 2) {
      fprintf(stderr, "Invalid value for -b, value must be at least 2.\n");
      return ARGP_ERR_UNKNOWN;
    }
    svm_bsize = ((svm_bsize+3)/4)*4;
    break;
  case CACHE_SIZE_ARG:
    cache_size = atoi(arg);
    if (cache_size < 2) {
      fprintf(stderr, "Invalid value for --cache_size, value must be greater than 1\n");
      return ARGP_ERR_UNKNOWN;
    }
    break;
  case COST_TYPE:
    svm_C = atof(arg);
    break;
  case DF_COUNTS_ARG:
    key = atoi(arg);
    if (key == 0) {
      df_counts = bow_tfidf_occurrences;
    } else if (key == 1) {
      df_counts = bow_tfidf_words;
    } else {
      return ARGP_ERR_UNKNOWN;
    }
    break;
  case BASELINE_AL:
    test_in_train = 1;
    al_pick_random = 1;
  case DO_ACTIVE_LEARNING:
    do_active_learning = 1;
    svm_al_qsize = atoi(arg);
    if (svm_al_qsize < 0) {
      fprintf(stderr, "Bogus AL-query size\n");
      return ARGP_ERR_UNKNOWN;
    }
    break;
  case INITIAL_AL_TSET_ARG:
    svm_init_al_tset = atoi(arg);
    break;
  case REMOVE_MISCLASS_TYPE:
    svm_remove_misclassified = 1;
    break;
  case RANDOM_SEED_ARG:
    svm_random_seed = atoi(arg);
    if (bow_verbosity_level > bow_progress)
      printf("random seed to chop test/train split: %d\n",svm_random_seed);
    break;
  case QUICK_SCORE:
    quick_scoring = 1;
    break;
  case SUPPRESS_SCORE_MAT_ARG:
    suppress_score_mat = 1;
    break;
  case SVM_BASENAME_ARG:
    svml_basename = arg;
    break;
  case TEST_IN_TRAIN_ARG:
    test_in_train = 1;
    break;
  case TF_TRANSFORM_TYPE:
    tf_transform_type = atoi(arg);
    if ((tf_transform_type < 0) || (tf_transform_type > 1)) {
      fprintf(stderr, "Invalid value for tf_transform_type, value must be 0 or 1\n");
      return ARGP_ERR_UNKNOWN;
    }
    break;
  case TRANSDUCE_CLASS_ARG:
    { 
      int a;
      a = atoi(arg);
      if (a == bow_doc_train) {
	fprintf(stderr,"Cannot do transduction on training set, ignoring \"%s\" option\n",arg);
      } else {
	if (!transduce_class) {
	  transduce_class_overriding = 1;
	  transduce_class = 0;
	}
	/* < 0 turns transduction off */
	if (a > 0) {
	  transduce_class |= (1 << a);
	}
      }
    }
    break;
  case TRANS_NPOS_ARG:
    svm_trans_npos = atoi(arg);
    if (svm_trans_npos < 1) {
      fprintf(stderr, "svm_trans_npos should be greater than 0.\n");
      return ARGP_ERR_UNKNOWN;
    }
    break;
  case TRANS_CSTAR_ARG:
    svm_trans_cstar = atof(arg);
    break;
  case USE_SMO_ARG:
    svm_use_smo = atoi(arg);
    /* the epsilon is used is 2x as big as it would be in the loqo method */
    if (svm_use_smo == 1) {
      svm_epsilon_crit /= 2;
    }
#ifndef HAVE_LOQO
    if (svm_use_smo != 1) {
      fprintf(stderr,"Cannot switch from SMO, no other solvers were built,\n"
	      "rebuild libbow with pr_loqo to use another algorithm.\n");
    }
#endif
    break;
  case VOTE_TYPE:
    vote_type = atoi(arg);
    if ((vote_type < 0) || (vote_type > 1)) {
      fprintf(stderr, "Invalid value for --vote, value must be 0 for linear or 1 for pairwise.\n");
      return ARGP_ERR_UNKNOWN;
    }
    break;
  case WEIGHT_TYPE:
    weight_type = atoi(arg);
    if ((weight_type < 0) || (weight_type > 3)) {
      fprintf(stderr, "Invalid value for -w, value must be 0, 1, 2, or 3.\n");
      return ARGP_ERR_UNKNOWN;
    }
    break;
  default:
    return ARGP_ERR_UNKNOWN;
  }
  return 0;
}

static const struct argp svm_argp = { svm_options, svm_parse_opt };

static struct argp_child svm_argp_child = {
  &svm_argp,		/* This child's argp structure */
  0,		       	/* flags for child */
  0,		       	/* optional header in help message */
  0		       	/* arbitrary group number for ordering */
};


void svm_permute_data(int *permute_table, bow_wv **docs, int *yvect, int ndocs) {
  int i, j;
  for (i=0; i<ndocs; i++) {
    permute_table[i] = i;
  }

  for (i=0; i<ndocs; i++) {
    bow_wv *d;
    int y;

    j = random() % ndocs;

    d = docs[j];
    docs[j] = docs[i];
    docs[i] = d;

    y = yvect[j];
    yvect[j] = yvect[i];
    yvect[i] = y;

    y = permute_table[j];
    permute_table[j] = permute_table[i];
    permute_table[i] = y;
  }
}

void svm_unpermute_data(int *permute_table, bow_wv **docs, int *yvect, int ndocs) {
  int i, j;
  for (i=0; i<ndocs; ) {
    bow_wv *d;
    int     y;

    j = permute_table[i];

    if (j == i) {
      i++;
      continue;
    }

    d = docs[j];
    docs[j] = docs[i];
    docs[i] = d;

    y = yvect[j];
    yvect[j] = yvect[i];
    yvect[i] = y;

    y = permute_table[j];
    permute_table[j] = permute_table[i];
    permute_table[i] = y;
  }
}

/* Right now, the vectors it looks at are the raw freq vectors */
double dprod(bow_wv *wv1, bow_wv *wv2) {
  double sum;
  bow_we *v1, *v2;
  int i1, i2;

  i1 = i2 = 0;
  sum = 0.0;
  v1 = wv1->entry;
  v2 = wv2->entry;

  while ((i1 < wv1->num_entries) && (i2 < wv2->num_entries)) {
    if(v1[i1].wi > v2[i2].wi) {
      i2++;
    }
    else if (v1[i1].wi < v2[i2].wi) {
      i1++;
    }
    else {
      sum += (v1[i1].weight) * (v2[i2].weight);
      i1++;
      i2++;
    }
  }
  return(sum);
}

/* dot product between a sparce & non-sparse vector */
double dprod_sd(bow_wv *wv, double *W) {
  double sum;
  bow_we *v;
  int i;

  i = 0;
  sum = 0.0;
  v = wv->entry;

  while (i < wv->num_entries) {
    sum += v[i].weight * W[v[i].wi];
    i++;
  }
  return(sum);
}

/* this is a whole different function just because the kernel is the biggest bottleneck */
double ddprod(bow_wv *wv1, bow_wv *wv2) {
  double tmp;
  double sum;
  bow_we *v1, *v2;
  int i1, i2;

  i1 = i2 = 0;
  sum = 0.0;
  v1 = wv1->entry;
  v2 = wv2->entry;

  while ((i1 < wv1->num_entries) && (i2 < wv2->num_entries)) {
    if(v1[i1].wi > v2[i2].wi) {
      i2++;
    }
    else if (v1[i1].wi < v2[i2].wi) {
      i1++;
    }
    else {
      tmp = (v1[i1].weight) - (v2[i2].weight);
      sum += tmp*tmp;
      i1++;
      i2++;
    }
  }
  return(sum);
}

/* End of command-line options specific to SVMs */
double kernel_poly(bow_wv *wv1, bow_wv *wv2) {
  return (pow(kparm.poly.lin_co * dprod(wv1,wv2) + 
	      kparm.poly.const_co, kparm.poly.degree));
}

double kernel_rbf(bow_wv *wv1, bow_wv *wv2) {
  return (exp(-1*kparm.rbf.gamma * (ddprod(wv1,wv2))));
}

double kernel_sig(bow_wv *wv1, bow_wv *wv2) {
  return(tanh(kparm.sig.lin_co * dprod(wv1,wv2)+kparm.sig.const_co));
}


static int rlength;
typedef struct _kc_el {
  bow_wv *i, *j;
  double val;
  unsigned int age;
} kc_el;

static kc_el *harray;
static unsigned int max_age;

void kcache_init(int nwide) {
  int i;
  max_age = 1;
  rlength = nwide;
  if ((harray = (kc_el *) malloc(sizeof(kc_el)*cache_size)) == NULL) {
    cache_size = cache_size/2;
    fprintf(stderr, "Could not allocate space for the kernel cache.\n"
	    "Shrinking size to %d and trying again.\n", cache_size);
    return (kcache_init(nwide));
  }

  for (i=0; i<cache_size; i++) {
    harray[i].i = (bow_wv *) ~0;
    harray[i].age = 0;
  }
}

void kcache_clear() {
  free(harray);
}

void kcache_age() {
  max_age++;
}

#define NHASHES   3
static int sub_nkcc=0; /* this makes nkc_calls = actual calls * 100 */
double svm_kernel_cache(bow_wv *wv1, bow_wv *wv2) {
  int h_index;
  int k;
  unsigned int min_age, min_from;
  double d;

  if (!((sub_nkcc++) % 100)) {
    svm_nkc_calls ++;
  }

  min_age = ~((unsigned long) 0);

  /* all of the kernels are symetric */
  if (wv1>wv2) {
    bow_wv *tmp;
    tmp = wv2;
    wv2 = wv1;
    wv1 = tmp;
  }

  for (k=h_index=0; k<NHASHES; k++) {
    h_index = ((((unsigned int)wv1)*rlength+((unsigned int)wv2))+h_index+19) % cache_size;
    
    if ((harray[h_index].i == wv1) && (harray[h_index].j == wv2)) {
      harray[h_index].age = max_age;
      return (harray[h_index].val);
    } else {
      if (harray[h_index].age > 0) {
	if (min_age > harray[h_index].age) {
	  min_age = harray[h_index].age;
	  min_from = h_index;
	}
	continue;
      } else {
	min_from = h_index;
	break;
      }
    }
  }

  d = kernel(wv1,wv2);
  harray[min_from].i = wv1;
  harray[min_from].j = wv2;
  harray[min_from].val = d;
  harray[min_from].age = max_age;
  return (d);
}

/* don't add the evaluation (useful if the items are getting deleted from a set) */
double svm_kernel_cache_lookup(bow_wv *wv1, bow_wv *wv2) {
  int h_index;
  int k;

  /* all of the kernels are symetric */
  if (wv1>wv2) {
    bow_wv *tmp;
    tmp = wv2;
    wv2 = wv1;
    wv1 = tmp;
  }

  for (k=h_index=0; k<NHASHES; k++) {
    h_index = ((((unsigned int)wv1)*rlength+((unsigned int)wv2))+h_index+19) % cache_size;
    
    if ((harray[h_index].i == wv1) && (harray[h_index].j == wv2)) {
      return (harray[h_index].val);
    }
  }

  return (kernel(wv1,wv2));
}

/* random qsort helpers */
int di_cmp(const void *v1, const void *v2) {
  double d1, d2;
  d1 = ((struct di *) v1)->d;
  d2 = ((struct di *) v2)->d;

  if (d1 < d2) {
    return (-1);
  } else if (d1 > d2) {
    return (1);
  } else {
    return 0;
  }
}

int i_cmp(const void *v1, const void *v2) {
  double d1, d2;
  d1 = *((int *) v1);
  d2 = *((int *) v2);

  if (d1 < d2) {
    return (-1);
  } else if (d1 > d2) {
    return (1);
  } else {
    return 0;
  }
}

int s_cmp(const void *v1, const void *v2) {
  bow_score *s1, *s2;
  s1 = ((bow_score *) v1);
  s2 = ((bow_score *) v2);

  if (s1->weight < s2->weight) {
    return (1);
  } else if (s1->weight > s2->weight) {
    return (-1);
  } else {
    if (s1->di < s2->di) {
      return (-1);
    } else if (s1->di > s2->di) {
      return (1);
    } else {
      return 0;
    }
  }
}

/* useful alternative to qsort or radix sort */
/* stick the top n values in the first n slots of arr */
void get_top_n(struct di *arr, int len, int n) {
  struct di min;

  int i,j;

  if (len < n) {
    return;
  }

  for (i=0; i<n && i<len; i++) {
    min.d = arr[i].d;
    
    for (j=i+1; j<len; j++) {
      if (arr[j].d < min.d) {
	min.d = arr[j].d;
	min.i = arr[j].i;

	arr[j].d = arr[i].d;
	arr[j].i = arr[i].i;

	
	arr[i].d = min.d;
	arr[i].i = min.i;
      }      
    }
  }

  return;
}

/* takes in docs, creates an idf vector & then weights the document */
/* sets doc weights by using counts & normalizer */
static float *tfidf(bow_wv **docs, int ntrain) {
  float    idf_sum;            /* sum of all the idf values */
  int      max_wi;	       /* the highest "word index" */
  float   *new_idf_vect;

  int i, j;

  bow_verbosify (bow_progress, "Setting weights over words:          ");
  max_wi = bow_num_words();

  new_idf_vect = (float *) malloc(sizeof(float)*max_wi);

  for (i=0; i<max_wi; i++) {
    new_idf_vect[i] = 0.0;
  }

  idf_sum = 0.0;

  /* First calculate document frequencies. */
  for (i=0; i<ntrain; i++)  {
    for (j=0; j<docs[i]->num_entries; j++) {
      if (df_counts == bow_tfidf_occurrences) {
	/* Make DV be the number of documents in which word WI occurs 
	   at least once.  (We can't just set it to DV->LENGTH because
	   we have to check to make sure each document is part of the
	   model. */
	new_idf_vect[docs[i]->entry[j].wi] ++;
      } else if (df_counts == bow_tfidf_words) {
	/* Make DV be the total number of times word WI appears
	   in any document. */
	new_idf_vect[docs[i]->entry[j].wi] += docs[i]->entry[j].count;
      } else {
	bow_error ("Bad TFIDF parameter df_counts.");
      }
    }
  }

  for (i=0; i<max_wi; i++)  {
    /* Set IDF from DF. */
    /* following what Thorsten alledgedly does */
    if (new_idf_vect[i] >= 3.0) {
      if (df_transform == LOG)
	new_idf_vect[i] = log2f (ntrain / new_idf_vect[i]);
      else if (df_transform == SQRT)
	new_idf_vect[i] = sqrtf (ntrain / new_idf_vect[i]);
      else if (df_transform == RAW)
	new_idf_vect[i] = ntrain / new_idf_vect[i];
      else {
	new_idf_vect[i] = 0;		/* to avoid gcc warning */
	bow_error ("Bad TFIDF parameter df_transform.");
      }
      idf_sum += new_idf_vect[i];
    } else {
      new_idf_vect[i] = 0.0;
    }
  }

  /* "normalize" the idf values */
  for (i=0; i<max_wi; i++)  {
    /* Get the document vector for this word WI */
    new_idf_vect[i] = max_wi*new_idf_vect[i]/idf_sum;
  }

  bow_verbosify (bow_progress, "\n");
  return new_idf_vect;
}

/* next 2 fn's stolen from info-gain.c */
/* Return the entropy given counts for each type of element. */
static double entropy(float e1, float e2) {
  double total = 0;		/* How many elements we have in total */
  double entropy = 0.0;
  double fraction;

  total = e1 + e2;

  /* If we have no elements, then the entropy is zero. */
  if (total == 0) {
    return 0.0;
  }

  entropy = 0.0;

  /* Now calculate the entropy */
  fraction = e1 / total;
  if (fraction != 0.0) {
    entropy  = -1 * fraction * log2f (fraction);
  }

  fraction = e2 / total;
  if (fraction != 0.0) {
    entropy -= fraction * log2f (fraction);
  }

  return entropy;
}

/* Return a malloc()'ed array containing an infomation-gain score for
   each word index. */
float *infogain(bow_wv **docs, int *yvect, int ndocs) {
  int grand_totals[2];  /* Totals for each class. */

  double total_entropy;             /* The entropy of the total collection. */
  double with_word_entropy;         /* The entropy of the set of docs with
				       the word in question. */
  double without_word_entropy;      /* The entropy of the set of docs without
				       the word in question. */

  float grand_total = 0; 
  float with_word_total = 0;
  float without_word_total = 0;
  int i, j;
  float *ret;
  double sum;

  int *fc[2];  /* tallies for all the words in class 1 & 2 */
  int num_words;

  bow_verbosify (bow_progress, "Calculating info gain... words ::          ");

  num_words = bow_num_words();
  ret = bow_malloc (num_words*sizeof (float));
  fc[0] = (int *) malloc(num_words*sizeof(double));
  fc[1] = (int *) malloc(num_words*sizeof(double));

  memset(fc[0], 0, num_words*sizeof(int));
  memset(fc[1], 0, num_words*sizeof(int));

  /* First set all the arrays to zero */
  for(i = 0; i < 2; i++) {
    grand_totals[i] = 0;
  }

  /* Now set up the grand totals. */
  for (i = 0; i<ndocs; i++) {
    if (yvect[i]) { /* if it is unlabeled, ignore it */
      grand_totals[(yvect[i]+1)/2] ++;

      /* this is only done incase some type of occurrence cnt should ever happen */
      grand_total ++;
    }
  }

  /* Calculate the total entropy */
  total_entropy = entropy (grand_totals[0], grand_totals[1]);
  sum = 0.0;

  /* the fc[...] are like the with_word totals */
  for (i=0; i<ndocs; i++) {
    if (yvect[i]) {
      int y = (yvect[i]+1)/2;
      for (j=0; j<docs[i]->num_entries; j++) {
	fc[y][docs[i]->entry[j].wi] ++;
      }
    }
  }

  for (i=0; i<num_words; i++) {
    with_word_total = fc[0][i] + fc[1][i];
    without_word_total = grand_total - with_word_total;

    with_word_entropy = entropy((float)fc[0][i],(float)fc[1][i]);
    without_word_entropy = entropy((float)(grand_totals[0] - fc[0][i]),
				       (float)(grand_totals[1] - fc[1][i]));

    ret[i]=(float) (total_entropy - 
	    (((double)with_word_total/(double)grand_total)*with_word_entropy) -
	    (((double)without_word_total/(double)grand_total)*without_word_entropy));

    assert (ret[i] >= -1e-7);
    sum += ret[i];
  }

  free(fc[0]);
  free(fc[1]);

  /* "normalize" in similar fashion to tfidf */
  for (i=0; i<num_words; i++)  {
    /* Get the document vector for this word WI */
    ret[i] = num_words*ret[i]/sum;
  }
  

  bow_verbosify (bow_progress, "\n");
  return ret;
}

/* this sets the already transformed weights THEN does the normalizing... */
static void svm_set_barrel_weights(bow_wv **docs, int *yvect, int ndocs, float **weight_vect) {
  int i,j;
  
  /* the weights have yet to be set & since that's what we're using... */
  if (svm_kernel_type == FISHER) {
    svm_set_fisher_barrel_weights(docs, ndocs);
    return;
  } else if (weight_type == RAW) {
    for (i=0; i<ndocs; i++) {
      for (j=0; j<docs[i]->num_entries; j++) {
	docs[i]->entry[j].weight *= docs[i]->normalizer;
      }
    }
    return;
  } else if (weight_type == TFIDF) {
    *weight_vect = tfidf(docs, ndocs);
  } else if (weight_type == INFOGAIN) {
    *weight_vect = infogain(docs, yvect, ndocs);
  }

  /* Now loop through all the documents, setting their weights */
  for (i=0; i<ndocs; i++) {
    double sum = 0.0;
    for (j=0; j<docs[i]->num_entries; j++) {
      docs[i]->entry[j].weight *= 
	docs[i]->normalizer * (*weight_vect)[docs[i]->entry[j].wi];
      sum += docs[i]->entry[j].weight;
    }
    if (sum >0.0) {
      bow_wv_normalize_weights_by_summing(docs[i]);
      for (j=0; j<docs[i]->num_entries; j++) {
	docs[i]->entry[j].weight *= docs[i]->normalizer;
      }
    }
  }
}

/* similar to barrel weights above, but this only works on 1 wv at a time */
/* will set weights from an already transformed oweights vector (if it was transformed), 
 * then normalize the weights */
static void svm_set_wv_weights(bow_wv *qwv, float *oweights, float *weight_vect) {
  double sum;
  int i;

  sum = 0.0;
  if (weight_type == TFIDF || weight_type == INFOGAIN) {
    if (tf_transform_type) {
      for (i=0; i<qwv->num_entries; i++) {
	qwv->entry[i].weight = 
	  weight_vect[qwv->entry[i].wi] * oweights[i];
	sum += qwv->entry[i].weight;
      }
    } else {
      for (i=0; i<qwv->num_entries; i++) {
	/* since no transform was used - just use the raw count*/
	qwv->entry[i].weight = 
	  weight_vect[qwv->entry[i].wi] * ((float) qwv->entry[i].count);

	sum += qwv->entry[i].weight;
      }
    }
  } else {
    for (i=0; i<qwv->num_entries && sum == 0.0; i++) {
      sum += qwv->entry[i].weight;
    }
  }

  if (sum > 0.0) {
    bow_wv_normalize_weights_by_summing(qwv);
    for (i=0; i<qwv->num_entries; i++) {
      qwv->entry[i].weight *= qwv->normalizer;
    }
  }
}

/* this function does a small amount of pre & post-processing for the
 * algorithm independent stuff (like randomly permuting everything &
 * outputting a hyperplane if possible */
int chunk_svm(bow_wv **docs, int *yvect, double *weights, double *b, 
	      bow_wv **W_wv, int ndocs) {
  int          nsv;
  int         *permute_table;
  double      *tvals;
  double      *W;

  int i,j;

  tvals = (double *) malloc(sizeof(double)*ndocs);

  if (svm_random_seed == 0) {
    svm_random_seed = (int) time(NULL);
    if (bow_verbosity_level > bow_progress)
      printf("random seed to chop test/train split: %d\n",svm_random_seed);
    fprintf(stderr,"random seed to chop test/train split: %d\n",svm_random_seed);
  }

  /* initialize... */
  nsv = 0;
  for (i=0; i<ndocs; i++) {
    weights[i] = 0.0;
    /* this won't matter for smo - it won't look at them anyway... */
    tvals[i] = 0.0;
  }

  permute_table = (int *) malloc(sizeof(int)*ndocs);

  svm_permute_data(permute_table, docs, yvect, ndocs);

  if (svm_use_smo) {
    smo(docs, yvect, weights, b, &W, ndocs, tvals, &nsv);
  } else {
#ifdef HAVE_LOQO
    build_svm_guts(docs, yvect, weights, b, &W, ndocs, tvals, &nsv);
#else
    fprintf(stderr, "Must build rainbow with pr_loqo to use this solver!\n");
#endif
  }
  
  svm_unpermute_data(permute_table, docs, yvect, ndocs);

  free(permute_table);
  free(tvals);
  
  if (svm_kernel_type == 0) {
    int num_words = bow_num_words();
    for (i=j=0; i<num_words; i++) {
      if (W[i] != 0.0) 
	j++;
    }

    (*W_wv) = bow_wv_new(j);
    for (i=j=0; j<(*W_wv)->num_entries; i++) {
      if (W[i] != 0.0) {
	(*W_wv)->entry[j].wi = i;
	(*W_wv)->entry[j].count = 1; /* just so that an assertion doesn't throw up later */
	(*W_wv)->entry[j].weight = W[i];
	j++;
      }
    }
    free(W);
  }

  return nsv;
}

/* note - these 2 fn's are not MEANT to be inverses of each
 * other - they don't need to be & shouldn't be!  */

/* given a 'focus' value, this transforms x into some int
 * this must be a BINARY function, outputting ONLY 1 & -1
 * because that's what the SVM use for y. */
int map_class_to_y(int focus, int x) {
  if (focus == x) {
    return 1;
  } else {
    return (-1);
  }
}

/* each pass over these things take up 2 labels... */
/* 1->1, -1->0 */
int map_y_to_class(int focus, int x) {
  return ((focus*2)+((x+1)/2));
}

/* helper to do whatever transform on a wv & then normalize it... */
static void tf_transform(bow_wv *doc) {
  int j;

  for (j=0; j<doc->num_entries; j++) {
    if (tf_transform_type == LOG) {
      doc->entry[j].weight = log2f((float) (doc->entry[j].count + 1));
    } else { 
      doc->entry[j].weight = (float) doc->entry[j].count;
    }
  }
}

/* sets counts & the normalizer too */
/* pulls from the barrel those docs that satisfy dec_fn & turns them into a doc array */
int make_doc_array(bow_barrel *barrel, bow_wv **docs, int *tdocs, int(*dec_fn)(bow_cdoc *)) {
  bow_dv_heap  *heap;
  int ndocs;
  bow_wv       *wv_tmp1;
  bow_wv       *wv_tmp;
  int j;

  /* Create the Heap of vectors of all documents */
  heap = bow_make_dv_heap_from_wi2dvf(barrel->wi2dvf); 
  for (ndocs=0; ; ndocs++) {
    int t = bow_heap_next_wv(heap, barrel, &wv_tmp1, dec_fn);
    if (t == -1) {
      break;
    } else {
      tdocs[ndocs] = t;
    }

    wv_tmp = bow_wv_new(wv_tmp1->num_entries);
    for (j=0; j<wv_tmp->num_entries; j++) {
      wv_tmp->entry[j].wi = wv_tmp1->entry[j].wi;
      wv_tmp->entry[j].count = wv_tmp1->entry[j].count;
    }

    tf_transform(wv_tmp);
    bow_wv_normalize_weights_by_summing(wv_tmp);

    docs[ndocs] = wv_tmp;
  }
  return ndocs;
}

/* C sucks - this is just a fn to pass to bow_heap_next_wv */
static int silly_currying_global_v1, silly_currying_global_v2;
int use_train_and_submodel(bow_cdoc *cdoc) {
  return ((cdoc->type == bow_doc_train && 
	   (silly_currying_global_v1 == cdoc->class ||  
	    silly_currying_global_v2 == cdoc->class)) ? 
	  1 : 0);
}

int use_transduction_docs(bow_cdoc *cdoc) {
  return (((1 << cdoc->type) & transduce_class) ? 1 : 0);
}

/* helper fn for adding the data for a training example to the barrel */
int add_sv_barrel(bow_barrel *new_barrel,double *weights, int *yvect, int *tdocs, 
		  double b, int model_no, int nsv) {
  bow_cdoc  cdoc_pos, cdoc_neg;
  bow_wv   *dummy_wv_neg;
  bow_wv   *dummy_wv_pos;
  int       misclass;
  int       n_meta_docs=0;

  int ni, pi, i, j, num_words;

  num_words = bow_num_words();

  dummy_wv_pos = bow_wv_new(num_words);
  dummy_wv_neg = bow_wv_new(num_words);

  dummy_wv_pos->num_entries = dummy_wv_neg->num_entries = 0;

  cdoc_pos.type = bow_doc_ignore;
  cdoc_neg.normalizer = cdoc_pos.prior = 0.0;
  cdoc_pos.filename = NULL;
  cdoc_pos.class_probs = NULL;
  cdoc_pos.class = 0;
  
  cdoc_neg.type = bow_doc_ignore;
  cdoc_neg.normalizer = cdoc_neg.prior = 0.0;
  cdoc_neg.filename = NULL;
  cdoc_neg.class_probs = NULL;
  cdoc_neg.class = 0;

  if (model_no == 0) {
    /* insert an two empty docs into the barrel so that the 
     * ancillary data has a place to live */
    cdoc_neg.word_count = 0;
    bow_barrel_add_document(new_barrel, &cdoc_neg, dummy_wv_pos);
    bow_barrel_add_document(new_barrel, &cdoc_neg, dummy_wv_pos);
    n_meta_docs = 2;
  }

  cdoc_pos.normalizer = b;
  cdoc_pos.class = map_y_to_class(model_no,(int) 1);

  cdoc_neg.class = map_y_to_class(model_no,(int) -1);   

  if (bow_verbosity_level > bow_progress)
    printf("support vectors: ");
  misclass = ni = pi = 0;
  for (i=j=0; j<nsv; i++) {
    if (weights[i] > svm_epsilon_a) {
      if (bow_verbosity_level > bow_progress)
	printf("%d(%f) ",i,weights[i]);
      if (yvect[i] > 0) {
	if (pi > num_words) {
	  dummy_wv_pos->num_entries = pi;
	  cdoc_pos.word_count = pi;
	  bow_barrel_add_document(new_barrel, &cdoc_pos, dummy_wv_pos);
	  pi = 0;
	  n_meta_docs++;
	}
	dummy_wv_pos->entry[pi].weight = (float) weights[i];
	dummy_wv_pos->entry[pi].count = tdocs[i] + 1;
	dummy_wv_pos->entry[pi].wi = pi;
	pi++;
      } else {
	if (ni > num_words) {
	  dummy_wv_neg->num_entries = pi;
	  cdoc_neg.word_count = ni;
	  bow_barrel_add_document(new_barrel, &cdoc_neg, dummy_wv_pos);
	  ni = 0;
	  n_meta_docs++;
	}
	dummy_wv_neg->entry[ni].weight = (float) weights[i];
	dummy_wv_neg->entry[ni].count = tdocs[i] + 1;
	dummy_wv_neg->entry[ni].wi = ni;
	ni++;
      }
      if (weights[i] > svm_C-svm_epsilon_a) {
	misclass++;
      }
      j++;
    }
  }
    
  if (bow_verbosity_level > bow_progress)
    printf("\n%d support vectors (%d bounded) in model #%d\n", 
	   nsv, misclass, model_no);

  cdoc_pos.word_count = pi;
  dummy_wv_pos->num_entries = pi;
  bow_barrel_add_document(new_barrel, &cdoc_pos, dummy_wv_pos); 

  cdoc_neg.word_count = ni;
  dummy_wv_neg->num_entries = ni;
  bow_barrel_add_document(new_barrel, &cdoc_neg, dummy_wv_neg);

  bow_wv_free(dummy_wv_pos);
  bow_wv_free(dummy_wv_neg);

  return (n_meta_docs+2);
}

bow_barrel *svm_vpc_merge(bow_barrel *src_barrel) {
  double        b;
  int           cto;         /* for pairwise - works with npass */
  bow_wv      **docs;        /* a doc major matrix */
  int           max_nsv;     /* highest # of nsv's in a submodel */
  int           mdocs;       /* the number of docs in the current submodel */
  bow_wv      **model_weights;
  int           n_meta_docs; /* # of documents that will go into the class barrel
			      * before the weight vectors will */
  int           nclasses;
  int           ndocs;        /* total # of documents to be trained & transduced */
  int           ntrain;       /* # of documents to be trained upon */
  int           ntrans;       /* # of "unlabeled" docs to use in transduction */
  bow_barrel   *class_barrel;
  int           nloops;      /* # of the current submodel being built */
  int           npass;       /* tmp for making submodels from the src_barrel */
  int           nsv;         /* # of support vectors for the current model */
  int           num_words;
  bow_wv      **sub_docs;
  int          *tdocs;       /* trans table of indices in docs to indices 
			      * in the original barrel */
  int           total_docs;  /* total # of docs (some not for training) */
  int          *utdocs;      /* trans table of the docs in our training set
			      * to those in the actually used in the models */
  float        *weight_vect;
  double       *weights;     /* lagrange multipliers */
  bow_wv      **W;           /* hyperplane for lin. folding */
  int          *yvect;

  int i,j;

#ifndef HAVE_LOQO
  if (svm_use_smo != 1) {
    fprintf(stderr,"Can only use SMO, no other solvers were built,\n"
	    "rebuild libbow with pr_loqo to use another algorithm.\n");
  }
#endif

#ifdef HAVE_FPSETMASK
  fpsetmask(~(FP_X_INV | FP_X_DNML | FP_X_DZ | FP_X_OFL | FP_X_UFL | FP_X_IMP));
#endif

  total_docs = src_barrel->cdocs->length;
  nclasses = bow_barrel_num_classes(src_barrel);
  weight_vect = NULL;
  model_weights = NULL;
  W = NULL;
  yvect = NULL;

  /* note - this OVER allocates - uses ALL, instead of just those for training */
  docs = (bow_wv **) alloca(sizeof(bow_wv *)*total_docs);
  tdocs = (int *) alloca(sizeof(int)*(total_docs+1));
  mdocs = 0; /* to shut gcc up */
  nsv = 0;

  if (nclasses == 1) {
    fprintf(stderr, "Cannot build SVM with only 1 class.\n");
    fflush(stderr);
    return NULL;
  } else if ((nclasses == 2) && (svm_kernel_type != FISHER)) {
    vote_type = PAIRWISE;
  }

  if (weight_type && svm_kernel_type == FISHER) {
    weight_type = 0;
    tf_transform_type = RAW;
  }

  if ((weight_type && vote_type == PAIRWISE) || weight_type == INFOGAIN) {
    svm_weight_style = WEIGHTS_PER_MODEL;
  } else if (weight_type) {
    svm_weight_style = WEIGHTS_PER_BARREL;
  } else {
    svm_weight_style = NO_WEIGHTS;
  }

  if (svm_weight_style != WEIGHTS_PER_MODEL) {
    ntrain = make_doc_array(src_barrel, docs, tdocs, bow_cdoc_is_train);

    if (ntrain < 2) {
      if (ntrain)
	bow_wv_free(docs[0]);
      fprintf(stderr, "Cannot build svm with less than 2 documents\n");
      fflush(stderr);
      return NULL;
    }
    
    /* append these trans docs to the arrays that were filled in above */
    ntrans = make_doc_array(src_barrel, &(docs[ntrain]), &(tdocs[ntrain]),
			    use_transduction_docs);

    ndocs = ntrain + ntrans;

    utdocs = (int *) alloca(sizeof(int)*ndocs);
    for (i=0; i<ndocs; i++) {
      utdocs[i] = i;
    }
    sub_docs = docs;
    mdocs = ndocs;

    svm_set_barrel_weights(docs, NULL, ndocs, &weight_vect);

    kcache_init(ndocs);
  } else {
    /* the ndocs value is the number of training documents that will
     * actually be used - this is done now JUST to fill up the tdocs array. */
    ntrain = make_doc_array(src_barrel, docs, tdocs, bow_cdoc_is_train);
   
    if (ntrain < 2) {
      if (ntrain)
	bow_wv_free(docs[0]);
      fprintf(stderr, "Cannot build svm with less than 2 documents\n");
      fflush(stderr);
      return NULL;
    }    

    /* figure out the # of ntrans */
    ntrans = make_doc_array(src_barrel, &(docs[ntrain]), &(tdocs[ntrain]),
			    use_transduction_docs);
    
    ndocs = ntrain + ntrans;

    /* since we don't need the docs for a while, free them */
    for (i=0; i<ndocs; i++) {
      bow_wv_free(docs[i]);
    }

    model_weights = (bow_wv **) malloc(sizeof(bow_wv *)*nclasses);

    utdocs = (int *) alloca(sizeof(int)*ndocs);
    /* the sub_docs vector will be rewritten with wv's to be used each iteration */
    sub_docs = alloca(sizeof(bow_wv *)*ndocs);
  }
  
  /* build the naive bayes model for the kernel... */
  if (svm_kernel_type == FISHER) {
    /* this isn't too bad since the cache REALLY should be large enough
     * to hold everything anyway (the cache doesn't get flushed) */
    if (vote_type == PAIRWISE) {
      fprintf(stderr, "Fisher kernel not implemented for pairwise models yet.\n");
      return NULL;
    }

    svm_setup_fisher(src_barrel,docs,nclasses,ndocs);
    weight_type = 0;
  }

  weights = (double *) alloca(sizeof(double)*ndocs);
  yvect = (int *) alloca(sizeof(int)*ndocs);

  /* put together the resultant barrel */
  class_barrel = bow_barrel_new(src_barrel->wi2dvf->size, 2, sizeof(bow_cdoc), 
				src_barrel->cdocs->free_func);

  class_barrel->method = src_barrel->method;
  class_barrel->is_vpc = 1;
    
  /* make a temp word array big enough to fill a whole strip of the wi2dvf table */
  num_words = bow_num_words();
  n_meta_docs = 0;

  /* this is the beginning of the for loop */
  max_nsv = -1;
  nloops = 0;
  npass = 0;

  if (svm_kernel_type == 0) {
    if (vote_type == PAIRWISE) {
      W = (bow_wv **) malloc(sizeof(bow_wv *)*(nclasses-1)*nclasses/2);
    } else {
      W = (bow_wv **) malloc(sizeof(bow_wv *)*nclasses);
    }
  }

  for (npass=0, cto=1; 1; ) {
    /* initialize & pull together the classes for the npass'th model... */
    if (vote_type == PAIRWISE) {
      if (cto == nclasses) {
	npass ++;
	if (npass == nclasses-1) {
	  break;
	}
	cto = npass+1;
      }

      if (svm_weight_style == WEIGHTS_PER_MODEL) {
	silly_currying_global_v1 = npass;
	silly_currying_global_v2 = cto;
	/* this gets called here since the doctype labels are in the barrel */
	/* utdocs is filled with actual indices, not indices of the train set */
	mdocs = make_doc_array(src_barrel, sub_docs, utdocs, use_train_and_submodel);
		
	/* put the labels in for the labeled docs. */
	for (i=0; i<mdocs; i++) {
	  bow_cdoc *cdoc = (GET_CDOC_ARRAY_EL(src_barrel,utdocs[i]));
	  yvect[i] = map_class_to_y(npass, cdoc->class);
	}

	/* even though this set of docs is always the same (since all of the 
	 * unlabeled data is used for each pairwise document [this is not 
	 * suggested to with a barrel w/ more than 2 classes] is used) we 
	 * still grab it, since the starting position for the unlabeled data
	 * isn't known beforehand (its a slight hack) */
	ntrans = make_doc_array(src_barrel, &(sub_docs[mdocs]), 
				&(utdocs[mdocs]), use_transduction_docs);

	/* this says that it is unlabelled */
	for (i=0; i<ntrans; i++) {
	  yvect[i+mdocs] = 0;
	}

	mdocs = mdocs + ntrans;

	/* utdocs holds the barrel indices we're interested in the sub-model
	 * indices - so we need to remap utdocs */
	for (i=j=0; j<mdocs; i++) {
	  if (tdocs[i] < utdocs[j]) {
	    continue;
	  } else {
	    utdocs[j] = i;
	    j++;
	  }
	}

      } else {
	for (i=j=0; i<ntrain; i++) {
	  bow_cdoc *cdoc = (GET_CDOC_ARRAY_EL(src_barrel,tdocs[i]));
	  if ((cdoc->class == npass) || (cdoc->class == cto)) {
	    sub_docs[j] = docs[i];
	    yvect[j] = map_class_to_y(npass, cdoc->class);
	    utdocs[j] = i;
	    j++;
	  }
	}
	for (i=0; i<ntrans; j++,i++) {
	    sub_docs[j] = docs[i+ntrain];
	    utdocs[j] = i+ntrain;
	    yvect[j] = 0;
	}

	mdocs = j;
      }

    } else {
      if (npass == nclasses) {
	break;
      }
      /* all docs should be included - the yvect will do the proper mapping */
      for (i=0; i<ntrain; i++) {
	bow_cdoc *cdoc = (GET_CDOC_ARRAY_EL(src_barrel,tdocs[i]));
	/* this map will be extended to make the barrel handle more than 2 classes */
	yvect[i] = map_class_to_y(npass, cdoc->class);
      }

      for (i=0; i<ntrans; i++) {
	yvect[i+ntrain] = 0;
      }
      
      if (svm_weight_style == WEIGHTS_PER_MODEL) {
	for (i=0; i<mdocs; i++) {
	  /* the weight values are not correct - they include the last values */
	  /* make_doc_array does this for pairwise voting */
	  tf_transform(docs[i]);
	}
      }
    }

    if (svm_weight_style == WEIGHTS_PER_MODEL) {
      svm_set_barrel_weights(sub_docs, yvect, mdocs, &weight_vect);
      model_weights[nloops] = bow_wv_new(num_words);
      for (i=j=0; i<num_words; i++) {
	if (weight_vect[i] != 0.0) {
	  model_weights[nloops]->entry[j].wi = i;
	  model_weights[nloops]->entry[j].count = 1;
	  model_weights[nloops]->entry[j].weight = weight_vect[i];
	  j++;
	}
      }
      free(weight_vect);
      model_weights[nloops]->num_entries = j;
    }

    if (mdocs < 2) {
      bow_error("Cannot create SVM with only 1 document!\n");
    }

    fprintf(stderr,"Learning %dth model\n",nloops);


    if (svml_basename) {
      char *tmp;
      FILE *f;
      tmp = malloc(sizeof(char)*(20+strlen(svml_basename)));
      sprintf(tmp,"train_%d_%s",nloops,svml_basename);
      f = fopen (tmp, "w");
      for (i=0; i<mdocs; i++) {
	fprintf(f,"%d ", yvect[i]);
	for (j=0; j<sub_docs[i]->num_entries; j++) {
	  fprintf (f,"%d:%f ",1+sub_docs[i]->entry[j].wi, sub_docs[i]->entry[j].weight);
	}
	fprintf(f,"\n");
      }
      fclose(f);

      /* set up the test output file */
      sprintf(tmp,"test_%s",svml_basename);
      svml_test_file = fopen (tmp, "w");

      free(tmp);

      nsv = 0;
      W[nloops] = bow_wv_new(0);
    } else {
      struct tms t1, t2;
      times(&t1);
      

      if (do_active_learning) {
	/* don't have al working with transduction yet... */
	if (ntrans) {
	  bow_error("active learning does not work yet with transduction.\n");
	}
	if (test_in_train) {
	  if (nloops >= model_starting_no) {
	    nsv = al_svm_test_wrapper(sub_docs, yvect, weights, &b, &(W[nloops]), 
				      mdocs,((nclasses==2 || suppress_score_mat) ? 0 : 1),
				      al_pick_random);
	  }
	} else {
	  nsv = al_svm(sub_docs, yvect, weights, &b, &(W[nloops]), mdocs, al_pick_random);
	}
      } else {
	if (ntrans) {
	  nsv = transduce_svm(sub_docs, yvect, weights, &b, &(W[nloops]),mdocs, ntrans);
	} else {
	  nsv = chunk_svm(sub_docs, yvect, weights, &b, &(W[nloops]), mdocs);
	}
      }

      times(&t2);
      fprintf(stderr,"user: %d, system:%d\n", (int)(t2.tms_utime-t1.tms_utime),
	      (int) (t2.tms_stime - t1.tms_stime));
    }

    if (vote_type == PAIRWISE && weight_type) {
      for (i=0; i<mdocs; i++) {
	bow_wv_free(sub_docs[i]);
      }
    }

    if (max_nsv < nsv) {
      max_nsv = nsv;
    }

    /* now we need to drop the significant classes into the barrel */
    if (!test_in_train) {
      n_meta_docs += add_sv_barrel(class_barrel, weights, yvect, utdocs, b, nloops, nsv);
    }
    
    if (vote_type == PAIRWISE) {
      cto++;
    } else {
      npass ++;
    }
    nloops++;
  }

  if (test_in_train && model_starting_no) {
    exit(0);
  }

  if (svm_kernel_type == 0) {
    bow_cdoc cdoc;
    cdoc.filename = NULL;
    cdoc.class_probs = NULL;
    cdoc.type = bow_doc_ignore;
    cdoc.class = 1;

    for (i=0; i<nloops; i++) {
      cdoc.word_count = W[i]->num_entries;
      bow_barrel_add_document(class_barrel, &cdoc, W[i]);
      bow_wv_free(W[i]);
    }
    free(W);
  }

  /* if it was per model, the cache would need to be alloc-ed & de-alloced locally */
  if (svm_weight_style != WEIGHTS_PER_MODEL) {
    kcache_clear();
  }

  /* place the model weights into the barrel */
  if (svm_weight_style == WEIGHTS_PER_MODEL) {
    bow_cdoc cdoc;
    cdoc.filename = NULL;
    cdoc.class_probs = NULL;
    cdoc.type = bow_doc_ignore;
    cdoc.class = 1;  /* this is fine since all of the docs are class 0 & we
		      * know how many meta docs there are */
    for (i=0; i<nloops; i++) {
      cdoc.word_count = model_weights[i]->num_entries;
      bow_barrel_add_document(class_barrel, &cdoc, model_weights[i]);
      bow_wv_free(model_weights[i]);
    }
    free(model_weights);
  }

  /* the docs were freed before just to save memory - now we need them again
   * & the optimizer's done, so a lot of memory is no longer being used */
  if (svm_weight_style == WEIGHTS_PER_MODEL && vote_type == PAIRWISE) {
    ndocs = make_doc_array(src_barrel, docs, tdocs, bow_cdoc_is_train);
  }

  /* now add all of the documents from the doc barrel to the class barrel */
  for (i=0; i<ndocs; i++) {
    /* add the i'th document to the class_barrel */
    /* first we need to make a new cdoc */
    bow_cdoc cdoc;
    memcpy(&cdoc, GET_CDOC_ARRAY_EL(src_barrel, tdocs[i]), sizeof(bow_cdoc));
    cdoc.filename = strdup(cdoc.filename);
    cdoc.class = 0;
    bow_barrel_add_document(class_barrel, &cdoc, docs[i]);
  }

  /* this has to be done after all possible dv's have been created */
  if (!((vote_type == PAIRWISE && weight_type) || weight_type == INFOGAIN)
      && weight_type) { /* if no weights are used at all this isn't nec. */
    bow_dv *dv;
    j = bow_num_words();
    for (i=0; i<j; i++) {
      dv = bow_wi2dvf_dv (class_barrel->wi2dvf, i);
      if (dv) {
	dv->idf = weight_vect[i];
      }
    }
    free(weight_vect);
  }

  if (vote_type == PAIRWISE) {
    BARREL_GET_MAX_NSV(class_barrel) = max_nsv;
  } else {
    BARREL_GET_MAX_NSV(class_barrel) = -1*max_nsv;
  }
  BARREL_GET_NCLASSES(class_barrel) = nclasses;
  BARREL_GET_NMETA_DOCS(class_barrel) = n_meta_docs;

  class_barrel->classnames = bow_int4str_new(0);
  for (i=0; i<nclasses; i++) {
    /* drop a class label in */
    bow_str2int(class_barrel->classnames, bow_int2str(src_barrel->classnames, i));
  }

  if (vote_type == AGAINST_ALL) {
    for (i=0; i<ndocs; i++) {
      bow_wv_free(docs[i]);
    }
  }
  
  return class_barrel;
}

inline double evaluate_model(bow_wv **docs, double *weights, int *yvect, double b, 
			     bow_wv *query_wv, int nsv) {
  double sum,tmp;
  int i,j;
  for (i=j=0, sum=0.0; j<nsv; i++) {
    if (weights[i] != 0.0) {
      tmp = kernel(docs[i],query_wv);
      sum += yvect[i]*weights[i]*tmp;
      j++;
    }
  }
  return (sum - b);
}

/* similar to above, but to only for when the cache should be used */
inline double evaluate_model_cache(bow_wv **docs, double *weights, int *yvect, double b, 
			     bow_wv *query_wv, int nsv) {
  double sum,tmp;
  int i,j;
  for (i=j=0, sum=0.0; j<nsv; i++) {
    if (weights[i] != 0.0) {
      tmp = svm_kernel_cache(docs[i],query_wv);
      sum += yvect[i]*weights[i]*tmp;
      j++;
    }
  }
  return (sum - b);
}

inline double evaluate_model_hyperplane(double *W, double b, bow_wv *query_wv) {
  return (dprod_sd(query_wv,W)-b);
}

/* this & setup_docs are for "caching" the barrel into its wv form */
static void clear_model_cache () {
  int i;
  if (model_cache.barrel) {
    for (i=0; i<model_cache.ndocs; i++) {
      bow_wv_free(model_cache.docs[i]);
    }

    for (i=0; i<model_cache.nmodels; i++) {
      free(model_cache.indices[i]);
      free(model_cache.weights[i]);
      free(model_cache.yvect[i]);
      if (svm_weight_style == WEIGHTS_PER_MODEL) {
	free(model_cache.word_weights.sub_model[i]);
      }
      if (svm_kernel_type == 0) {
	free(model_cache.W[i]);
      }
    }

    free(model_cache.docs);
    free(model_cache.indices);
    free(model_cache.weights);
    free(model_cache.yvect);
    free(model_cache.bvect);
    free(model_cache.sizes);
    if (svm_weight_style == WEIGHTS_PER_MODEL) {
      free(model_cache.word_weights.sub_model);
    } else if (svm_weight_style == WEIGHTS_PER_BARREL) {
      free(model_cache.word_weights.barrel);
    }
    if (svm_kernel_type == 0) {
      free(model_cache.W);
    }
  }
  model_cache.barrel = NULL;
}

/* this fn fills *sub_docs with the m-th submodel (it pulls the docs
 * from the cache that setup_docs fills & then sets whatever weights
 * are necessary) */
/* the query vector should already be normalized */
void make_sub_model(int m, int weight_style, bow_wv ***sub_docs) {
  bow_wv **docs;
  int     *indices;
  float  *weights;
  bow_we  *v2;

  int i,j;

  docs = *sub_docs;

  for(j=0; j<model_cache.sizes[m]; j++) {
    docs[j] = model_cache.docs[model_cache.indices[m][j]];
  }

  if (weight_style) {
    indices = model_cache.indices[m];
    weights = model_cache.word_weights.sub_model[m];

    for (i=0; i<model_cache.sizes[m]; i++) {
      int n = docs[i]->num_entries;
      int di = indices[i];
      v2 = docs[i]->entry;
      for (j=0; j<n; j++) {
	v2[j].weight = weights[v2[j].wi] * model_cache.oweights[di][j];
      }
    }
  }
}

static void setup_docs(bow_barrel *barrel, int nclasses, int nmodels) {
  bow_cdoc    *cdoc;
  int          classnum, c_old;
  bow_wv      *dtmp;
  bow_dv_heap *heap;
  int          ndocs;
  int          nmeta_docs;
  int          nwords;
  int          total_words;
  int h,i,j,k,l;

  nmeta_docs = BARREL_GET_NMETA_DOCS(barrel);
  ndocs = barrel->cdocs->length - nmeta_docs;
  total_words = bow_num_words();

  clear_model_cache();

  model_cache.docs = (bow_wv **) malloc(sizeof(bow_wv *)*ndocs);

  model_cache.indices = (int **) malloc(sizeof(int *)*nmodels);
  model_cache.weights = (double **) malloc(sizeof(double *)*nmodels);
  model_cache.yvect = (int **) malloc(sizeof(int *)*nmodels);

  model_cache.bvect = (double *) malloc(sizeof(double)*nmodels);
  model_cache.sizes = (int *) malloc(sizeof(int)*nmodels);

  if (weight_type) {
    if (vote_type == PAIRWISE || weight_type == INFOGAIN) {
      svm_weight_style = WEIGHTS_PER_MODEL;
      model_cache.word_weights.sub_model = (float **) malloc(sizeof(float *)*nmodels);
      if (tf_transform_type) 
	model_cache.oweights = (float **) malloc(sizeof(float *)*ndocs);
    } else {
      svm_weight_style = WEIGHTS_PER_BARREL;
      model_cache.word_weights.barrel = (float *) malloc(sizeof(float *)*total_words);
    }
  } else {
    svm_weight_style = NO_WEIGHTS;
  }

  if (svm_kernel_type == 0) {
    model_cache.W = (double **) malloc(sizeof(double *)*nmodels);
  } else {
    model_cache.W = NULL;
  }

  /* Create the Heap of vectors of all documents */
  heap = bow_make_dv_heap_from_wi2dvf(barrel->wi2dvf); 

  /* throw away the first 2 - they hold only ancillary info 
   * (see the macros at the top of the file) */
  bow_heap_next_wv(heap, barrel, &dtmp, bow_cdoc_yes);
  bow_heap_next_wv(heap, barrel, &dtmp, bow_cdoc_yes);

  /* grab the meta documents first & setup the arrays */
  for (h=0,l=2; h<nmodels; h++) {
    classnum=c_old=-1;

    for (nwords=j=0,k=-1; l<nmeta_docs; l++) {    /* only go thru for 2 different classes */
      cdoc = bow_cdocs_di2doc (barrel->cdocs, l);

      /* if this isn't what the last one was,  */
      if ((cdoc->class != classnum) && (c_old != cdoc->class) && (k==1)) {
	break;
      }

      bow_heap_next_wv(heap, barrel, &dtmp, bow_cdoc_yes);
      
      if ((cdoc->class != classnum) && (c_old != cdoc->class)) {
	if (k==-1) {
	  /* do the stuff that needs done once for each model */
	  model_cache.bvect[h] = cdoc->normalizer;
	  nwords = dtmp->num_entries;
	  model_cache.indices[h] = (int *) malloc(sizeof(int)*nwords);
	  model_cache.weights[h] = (double *) malloc(sizeof(double)*nwords);
	  model_cache.yvect[h] = (int *) malloc(sizeof(int)*nwords);
	} else {  /* in an already initialized model, but we need to grow arrays */
	  nwords += dtmp->num_entries;
	  model_cache.indices[h] = (int *) realloc(model_cache.indices[h], sizeof(int)*(nwords));
	  model_cache.weights[h] = (double *) realloc(model_cache.weights[h], sizeof(double)*nwords);
	  model_cache.yvect[h] = (int *) realloc(model_cache.yvect[h], sizeof(int)*nwords);
	}

	k++;
	c_old = classnum;
	classnum = cdoc->class;
      } else {  /* already seen this class - need to grow some arrays */
	nwords += dtmp->num_entries;
	model_cache.indices[h] = (int *) realloc(model_cache.indices[h], sizeof(int)*(nwords));
	model_cache.weights[h] = (double *) realloc(model_cache.weights[h], sizeof(double)*nwords);
	model_cache.yvect[h] = (int *) realloc(model_cache.yvect[h], sizeof(int)*nwords);
      }

      for (i=0; j<nwords; j++,i++) {
	model_cache.indices[h][j] = dtmp->entry[i].count - 1;
	model_cache.weights[h][j] = dtmp->entry[i].weight;
	model_cache.yvect[h][j] = ((k == 0) ? 1.0 : -1.0);
      }

    }
    model_cache.sizes[h] = nwords;    
  }

  /* if there are cached hyperplanes, lets grab them... */
  if (svm_kernel_type == 0) {
    for (i=0; i<nmodels; i++) {
      bow_heap_next_wv(heap, barrel, &dtmp, bow_cdoc_yes);
      model_cache.W[i] = (double *) malloc(total_words*sizeof(double));
      for (h=j=0; j<dtmp->num_entries; h++) {
	if (h == dtmp->entry[j].wi) {
	  model_cache.W[i][h] = dtmp->entry[j].weight;
	  j++;
	} else {
	  model_cache.W[i][h] = 0.0;
	}
      }
      for (; h<total_words; h++) {
	model_cache.W[i][h] = 0.0;
      }
    }

#ifdef DEBUG
    for (j=0; j<total_words; j++) {
      tmp = model_cache.W[0][j] + model_cache.W[1][j];
      assert(tmp >= -1*svm_epsilon_crit && tmp <= svm_epsilon_crit);
    }
#endif
  }

  /* any kind of pairwise weights needs its own set of weights, since the domain
   * for each model is different...  Info-gain also needs it since items relevant
   * & useful in one model may be of no use in another (since there are always only
   * 2 classes...) */
  if (svm_weight_style == WEIGHTS_PER_MODEL) {
    for (h=0; h<nmodels; h++) {
      bow_heap_next_wv(heap, barrel, &dtmp, bow_cdoc_yes);
      model_cache.word_weights.sub_model[h] = (float *) malloc(sizeof(float)*total_words);
      for (i=j=0; i<total_words; i++) {
	if ((j < dtmp->num_entries) && (dtmp->entry[j].wi == i)) {
	  model_cache.word_weights.sub_model[h][i] = dtmp->entry[j].weight;
	  j++;
	} else {
	  model_cache.word_weights.sub_model[h][i] = 0.0;
	}
      }
    }
  } else if (svm_weight_style == WEIGHTS_PER_BARREL) {
    bow_dv *dv;
    
    for (h=0; h<total_words; h++) {
      dv = bow_wi2dvf_dv (barrel->wi2dvf, h);
      if (dv) {
	model_cache.word_weights.barrel[h] = dv->idf;
      } else {
	model_cache.word_weights.barrel[h] = 0.0;
      }
    }
  }
  
  /* the rest of the documents are just the training documents - keep
   * grabbing them until they're gone */
  for (h=0; heap->length; h++) {
    bow_heap_next_wv(heap, barrel, &dtmp, bow_cdoc_yes);
    model_cache.docs[h] = bow_wv_new(dtmp->num_entries);
    
    for (j=0; j<dtmp->num_entries; j++) {
      model_cache.docs[h]->entry[j].wi = dtmp->entry[j].wi;
      model_cache.docs[h]->entry[j].count = dtmp->entry[j].count;
    }
    /*
    if (svm_kernel_type == FISHER) {
      for (j=0; j<model_cache.docs[h]->num_entries; j++) {
	model_cache.docs[h]->entry[j].weight = (float) model_cache.docs[h]->entry[j].count;
      }
      model_cache.docs[h]->normalizer = 1.0;
      continue;
    }*/
    tf_transform(model_cache.docs[h]);

    /* this means that the weights will change with every model & 
     * therefore we need to keep track of what they were initially (after the tf_transform) */
    if (svm_weight_style == WEIGHTS_PER_MODEL && tf_transform_type) {
      model_cache.oweights[h] = (float *) malloc(sizeof(float)*dtmp->num_entries);
      for (j=0; j<model_cache.docs[h]->num_entries; j++) {
	model_cache.oweights[h][j] = model_cache.docs[h]->entry[j].weight;
      }
    } else {
      /* otherwise, the weights should be set now... */
      if (svm_weight_style == NO_WEIGHTS) {
	bow_wv_normalize_weights_by_summing(model_cache.docs[h]);
	for (j=0; j<model_cache.docs[h]->num_entries; j++) {
	  model_cache.docs[h]->entry[j].weight *= model_cache.docs[h]->normalizer;
	}
      } else {
	for (j=0; j<model_cache.docs[h]->num_entries; j++) {
	  model_cache.docs[h]->entry[j].weight *= 
	    model_cache.word_weights.barrel[model_cache.docs[h]->entry[j].wi];
	}
	bow_wv_normalize_weights_by_summing(model_cache.docs[h]);
	for (j=0; j<model_cache.docs[h]->num_entries; j++) {
	  model_cache.docs[h]->entry[j].weight *= model_cache.docs[h]->normalizer;
	}
      }
    }
    /* the oweights (original weights) in the svm_wv now has the proper,
     * tf_transformed & normalized value. */
  }

  model_cache.barrel = barrel;
  model_cache.ndocs = h;
  model_cache.nmodels = nmodels;
}

int svm_score(bow_barrel *barrel, bow_wv *query_wv, bow_score *bscores, 
	      int bscores_len, int loo_class) {
  int          ci;
  int          max_nsv;
  double      *model_vals;
  bow_score   *myscores;
  float       *base_qwv_weights;
  int          nclasses;
  int          nmodels;
  int          ntied;
  int          num_scores;
  int          set_weights;
  bow_wv     **sub_docs;
  int          voting_scheme;

  int i, ii, j, k;

  /* This should be initialized in case BSCORES_LEN is larger than the number
   * of classes in the barrel */
  for (ci=0; ci < bscores_len; ci++) {
    bscores[ci].weight = 0.0;
    bscores[ci].di = 0;
    bscores[ci].name = "default";
  }

  base_qwv_weights = NULL;
  max_nsv = BARREL_GET_MAX_NSV(barrel);
  nclasses = BARREL_GET_NCLASSES(barrel);
  if (max_nsv < 0) {
    max_nsv *= -1;
    nmodels = nclasses;
    voting_scheme = AGAINST_ALL;
  } else {
    nmodels = nclasses*(nclasses-1)/2;
    voting_scheme = PAIRWISE;
  }

  if (model_cache.barrel != barrel) {
    setup_docs(barrel, nclasses, nmodels);
  }
  
  set_weights = svm_weight_style;

  tf_transform(query_wv);
  if (svm_weight_style == WEIGHTS_PER_BARREL) {
    svm_set_wv_weights(query_wv, NULL, model_cache.word_weights.sub_model[i]);
  }

  if ((svm_weight_style == NO_WEIGHTS) || (svm_weight_style == WEIGHTS_PER_BARREL)) {    
    bow_wv_normalize_weights_by_summing(query_wv);
    for (i=0; i<query_wv->num_entries; i++) {
      query_wv->entry[i].weight *= query_wv->normalizer;
    }    
    set_weights = 0;
  } else if (tf_transform_type) {
    base_qwv_weights = (float *) malloc(sizeof(float)*query_wv->num_entries);
    for (i=0; i<query_wv->num_entries; i++) {
      base_qwv_weights[i] = query_wv->entry[i].weight;
    }
  }

  
  model_vals = (double *) alloca(sizeof(double)*nmodels);
  sub_docs = (bow_wv **) malloc(sizeof(bow_wv *)*model_cache.ndocs);

  /* classify all of our models */
  if (svm_kernel_type == 0) {
    for (i=0; i<nmodels; i++) {
      if (set_weights) {
	if (tf_transform_type) {
	  svm_set_wv_weights(query_wv, base_qwv_weights, model_cache.word_weights.sub_model[i]);
	} else {
	  svm_set_wv_weights(query_wv, NULL, model_cache.word_weights.sub_model[i]);
	}
      }
      
      if (svml_test_file) {
	for (j=0; j<query_wv->num_entries; j++) {
	  fprintf (svml_test_file,"%d:%f ",1+query_wv->entry[j].wi, query_wv->entry[j].weight);
	}
	fprintf(svml_test_file,"\n");
	model_vals[i] = 1;
      } else {
	model_vals[i] = 
	  evaluate_model_hyperplane(model_cache.W[i], model_cache.bvect[i], query_wv);
      }
    }
  } else {
    for (i=0; i<nmodels; i++) {
      make_sub_model(i, set_weights, &sub_docs);
      if (svm_weight_style == WEIGHTS_PER_MODEL) {
	svm_set_wv_weights(query_wv, base_qwv_weights, model_cache.word_weights.sub_model[i]);
      }

      if (svml_test_file) {
	for (j=0; j<query_wv->num_entries; j++) {
	  fprintf (svml_test_file,"%d:%f ",1+query_wv->entry[j].wi, query_wv->entry[j].weight);
	}
	fprintf(svml_test_file,"\n");
	model_vals[i] = 1;
      } else {
	model_vals[i] = 
	  evaluate_model(sub_docs, model_cache.weights[i], model_cache.yvect[i], 
			 model_cache.bvect[i], query_wv, model_cache.sizes[i]);
      }
    }
  }
  if (base_qwv_weights)
    free(base_qwv_weights);
  free(sub_docs);

  if (!quick_scoring) {
    clear_model_cache();
  }

  /* now I have the outputs for each of the models, if its a linear model,
   * i'm done.  If its pairwise, then I need to put together votes */

  if (voting_scheme == PAIRWISE && nclasses > 2) {
    myscores = (bow_score *) alloca(sizeof(bow_score)*nclasses);

    for (i=0; i<nclasses; i++) {
      myscores[i].di = i;
      myscores[i].name = "default";
      myscores[i].weight = 0.0;
    }

    for (i=ii=0; i<nclasses-1; i++, ii+=j) {
      for (j=0; j<nclasses-i-1; j++) {
	if (model_vals[j+ii] > 0) {
	  myscores[i].weight += 1.0;
	} else {
	  myscores[j+i+1].weight += 1.0;
	}
      }
    }

    /* check for ties */
    qsort(myscores, nclasses, sizeof(bow_score), s_cmp);

    for (ntied=i=1; i<nclasses; i++) {
      if (myscores[i].weight == myscores[0].weight) {
	ntied++;
      } else {
	break;
      }
    }

    /* break ties */
    if (ntied > 1) {
      struct di *div;
      div = (struct di*) alloca(sizeof(struct di)*ntied);

      for (i=0; i<ntied; i++) {
	div[i].d = 0.0;
	div[i].i = myscores[i].di;
      }

      fprintf(stderr,"Warning, %d way tie.\n",ntied);
      fflush(stdout);
      for (i=ii=k=0; k<ntied-1; i++, ii+=(nclasses-i)) {
	if (i == myscores[k].di) {
	  k++;
	  for (j=k; j<ntied; j++) {
	    if (model_vals[ii+myscores[j].di-i-1] > 0) {
	      myscores[k-1].weight += 0.2;
	      div[k-1].d += model_vals[ii+myscores[j].di-i-1];
	    } else {
	      myscores[j].weight += 0.2;
	      div[j].d += -model_vals[ii+myscores[j].di-i-1];
	    }
	  }
	}
      }

      qsort(myscores, ntied, sizeof(bow_score), s_cmp);

      k = ntied;
      for (ntied=i=1; i<k; i++) {
	if (myscores[i].weight == myscores[0].weight) {
	  ntied++;
	} else {
	  break;
	}
      }

      if (ntied > 1) {
	fprintf(stderr,"Warning, taking largest pairwise value to break %d-way tie\n", ntied);
	fflush(stdout);

	for (i=0; i<ntied; i++) {
	  for (j=0; 1; j++) {
	    if (myscores[i].di == div[j].i) {
	      myscores[i].weight += div[j].d/1000;
	      break;
	    }
	  }
	}

	qsort(myscores, ntied, sizeof(bow_score), s_cmp);
      }
    }

    memcpy(bscores, myscores, nclasses*sizeof(bow_score));

    return nclasses;
  } else {
    if (nclasses == 2) {
      model_vals[1] = -1*model_vals[0];
    }
    /* Put SCORES into BSCORES in sorted order */
    /* Each round, find the best remainaing score and put it into bscores */
    for (num_scores=ci=0; ci < nclasses; ci++) {
      if (num_scores < bscores_len
	  || bscores[num_scores-1].weight < model_vals[ci]) {
	int dsi;
	/* We are going to put this score and class index into SCORES
	 * because either 1) there is an empty space in SCORES, or 2)
	 * SCORES[CI] is larger than the smallest score currently there */
	if (num_scores < bscores_len)
	  num_scores++;
	dsi = num_scores - 1;
	/* Shift down all the entries that are smaller than SCORES[CI] */
	for (; dsi > 0 && bscores[dsi-1].weight < model_vals[ci]; dsi--) {
	  bscores[dsi].weight = bscores[dsi-1].weight;
	  bscores[dsi].name = bscores[dsi-1].name;
	  bscores[dsi].di = bscores[dsi-1].di;
	}
	bscores[dsi].weight = model_vals[ci];
	bscores[dsi].di = ci;
	bscores[dsi].name = "default";
      }
    }

    return num_scores;
  }
}

/* since the class_probs field of the cdocs is used & is not a ptr, 
 * the value needs to be nullified before the std free fn is invoked */
void svm_barrel_free(bow_barrel *barrel) {
  BARREL_GET_MAX_NSV(barrel) = 0;
  BARREL_GET_NMETA_DOCS(barrel) = 0;
  return (bow_barrel_free(barrel));
}

rainbow_method rainbow_method_svm = {
  "svm",
  NULL,
  NULL,
  NULL,
  svm_vpc_merge,               /* note: this is written esp. for svms, hence
				* the reason the first 3 fns are undefined */
  NULL,
  svm_score,
  bow_wv_set_weights_to_count, /* any similarity metric will work... */
  NULL,
  svm_barrel_free,
  NULL
};

bow_method bow_method_svm = { "svm" };
void _register_method_svm () __attribute__ ((constructor));

void _register_method_svm () {
  bow_method_register_with_name ((bow_method*)&rainbow_method_svm, "svm", 
				 sizeof(rainbow_method), &svm_argp_child);
  bow_argp_add_child (&svm_argp_child);
}