1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792
|
/* treenode.c - Functions for hierarchical word distributions. */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Andrew Kachites McCallum <mccallum@cs.cmu.edu>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#include <argp.h>
#include <bow/crossbow.h>
#define USE_ACCELERATED_EM 0
#define MISC_STAYS_FLAT 1
/* Accellerated EM: still gauranteed to converge below 2.0. 1.8 is good */
#define EM_ACCELERATION 1.8
/* Functions for creating, reading, writing the treenode */
/* Create and return a new treenode, adding it as a child of PARENT,
if PARENT is non-NULL. */
treenode *
bow_treenode_new (treenode *parent,
int children_capacity,
const char *name)
{
treenode *ret;
int i;
/* To avoid malloc'ing zero bytes */
if (children_capacity == 0)
children_capacity = 1;
ret = bow_malloc (sizeof (treenode));
/* Set relationship with parent. */
ret->parent = parent;
if (parent)
{
ret->ci_in_parent = parent->children_count;
if (parent->children_count >= parent->children_capacity)
{
parent->children_capacity *= 2;
parent->children =
bow_realloc (parent->children,
parent->children_capacity * sizeof (void*));
}
parent->children[parent->children_count++] = ret;
if (name)
{
/* +1 for the /, +1 for the terminating 0 */
ret->name = bow_malloc (strlen (parent->name) + strlen (name) + 2);
sprintf ((char*)ret->name, "%s%s/", parent->name, name);
}
else
{
ret->name = bow_malloc (strlen (parent->name) + 20);
sprintf ((char*)ret->name, "%s%d/", parent->name, ret->ci_in_parent);
}
ret->words_capacity = parent->words_capacity;
ret->classes_capacity = parent->classes_capacity;
}
else
{
ret->ci_in_parent = -1;
ret->name = strdup ("/");
ret->words_capacity = bow_num_words ();
ret->classes_capacity = 0;
}
ret->children_count = 0;
ret->children_capacity = children_capacity;
assert (children_capacity);
ret->children = bow_malloc (ret->children_capacity * sizeof (void*));
ret->words = bow_malloc (ret->words_capacity * sizeof (double));
ret->new_words = bow_malloc (ret->words_capacity * sizeof (double));
ret->new_words_normalizer = 0;
for (i = 0; i < ret->words_capacity; i++)
{
ret->words[i] = 0;
ret->new_words[i] = 0;
}
ret->prior = 1.0;
ret->new_prior = 1.0;
if (parent)
ret->depth = parent->depth + 1;
else
ret->depth = 0;
/* Initialize ancestor mixture weights, LAMBDAS, to use exclusively
the local estimate. */
ret->lambdas = bow_malloc ((ret->depth + 2) * sizeof (double));
ret->new_lambdas = bow_malloc ((ret->depth + 2) * sizeof (double));
ret->lambdas[0] = 1.0;
ret->new_lambdas[0] = 1.0;
for (i = 1; i < ret->depth + 2; i++)
{
ret->lambdas[i] = 0;
ret->new_lambdas[i] = 0;
}
/* Initialize the CLASSES distribution later, only if requested. */
if (ret->classes_capacity == 0)
{
ret->classes = NULL;
ret->new_classes = NULL;
}
else
{
ret->classes = bow_malloc (ret->classes_capacity * sizeof (double));
ret->new_classes = bow_malloc (ret->classes_capacity * sizeof (double));
for (i = 0; i < ret->classes_capacity; i++)
{
ret->classes[i] = 1.0 / ret->classes_capacity;
ret->new_classes[i] = 0.0;
}
}
/* Initialize the DI_WI_NEW_WORDS later, only if requested. */
ret->di_loo = NULL;
ret->di_wvi_loo = NULL;
ret->new_di_loo = NULL;
ret->new_di_wvi_loo = NULL;
return ret;
}
/* Free the memory allocate by TN and its children */
void
bow_treenode_free (treenode *tn)
{
int ci;
assert (tn == NULL && tn->ci_in_parent == -1);
for (ci = 0; ci < tn->children_count; ci++)
bow_treenode_free (tn->children[ci]);
if (tn->children) bow_free (tn->children);
if (tn->words) bow_free (tn->words);
if (tn->new_words) bow_free (tn->new_words);
if (tn->lambdas) bow_free (tn->lambdas);
if (tn->new_lambdas) bow_free (tn->new_lambdas);
if (tn->name) bow_free ((char*)tn->name);
bow_free (tn);
}
/* Create and return a new treenode with the proper settings to be the
root treenode */
treenode *
bow_treenode_new_root (int children_count)
{
return bow_treenode_new (NULL, children_count, NULL);
}
/* Reallocate memory for the WORDS and NEW_WORDS arrays, big enough
for the vocabulary of size bow_num_words(). This is useful when the
tree has been created before all the documents have been indexed. */
void
bow_treenode_realloc_words_all (treenode *root)
{
int i;
if (bow_num_words () > root->words_capacity)
{
root->words_capacity = bow_num_words ();
root->words =
bow_realloc (root->words, root->words_capacity * sizeof (double));
root->new_words =
bow_realloc (root->words, root->words_capacity * sizeof (double));
root->new_words_normalizer = 0;
for (i = 0; i < root->words_capacity; i++)
{
root->words[i] = 0;
root->new_words[i] = 0;
}
}
for (i = 0; i < root->children_count; i++)
bow_treenode_realloc_words_all (root->children[i]);
}
/* Add to parent a CHILD that was previously created with a NULL parent. */
void
bow_treenode_add_child (treenode *parent, treenode *child)
{
assert (parent->children_count < parent->children_capacity);
assert (child->ci_in_parent == -1);
child->parent = parent;
child->ci_in_parent = parent->children_count;
parent->children[parent->children_count++] = child;
}
/* Detach CHILD from PARENT, shifting remaining children, and updating
the remaining children's CI_IN_PARENT. */
void
bow_treenode_remove_child (treenode *parent, treenode *child)
{
bow_error ("%s: Not yet implemented", __PRETTY_FUNCTION__);
}
/* To this node and all its children, add a child named "Misc" if not
there already. */
void
bow_treenode_add_misc_child_all (treenode *root)
{
int ci;
/* If ROOT is a leaf, just return immediately */
if (root->children_count == 0)
return;
/* Search for a pre-existing "Misc" child */
for (ci = 0; ci < root->children_count; ci++)
if (strstr (root->children[ci]->name, "/Misc/"))
goto do_children;
/* Add a "Misc" child */
bow_treenode_new (root, 0, "Misc");
/* Recursively handle children */
do_children:
for (ci = 0; ci < root->children_count; ci++)
bow_treenode_add_misc_child_all (root->children[ci]);
}
/* Return the "next" treenode in a traversal of the tree. CONTEXT
should be initialized to the root of the tree, otherwise strange
results will ensue: nodes on the path from the initial CONTEXT node
to the root will be skipped by the iteration. When the traversal
is finished, NULL will be returned. */
treenode *
bow_treenode_iterate_all (treenode **context)
{
treenode *ret;
if (*context == NULL)
return NULL;
/* Save the context as this call's return value */
ret = *context;
/* Update the context for the next call. */
if ((*context)->children_count)
*context = (*context)->children[0];
else
{
while ((*context)->parent
&& ((*context)->ci_in_parent
== (*context)->parent->children_count-1))
{
*context = (*context)->parent;
}
if ((*context)->parent)
*context = (*context)->parent->children[(*context)->ci_in_parent+1];
else
*context = NULL;
}
return ret;
}
/* Same as above, but only return the leaf nodes. */
treenode *
bow_treenode_iterate_leaves (treenode **context)
{
treenode *ret;
while ((ret = bow_treenode_iterate_all (context))
&& ret->children_count != 0)
;
return ret;
}
treenode *
bow_treenode_iterate_all_under_node (treenode **context, treenode *node)
{
treenode *ret;
if (*context == NULL)
return NULL;
/* Save the context as this call's return value */
ret = *context;
/* Update the context for the next call. */
if ((*context)->children_count)
*context = (*context)->children[0];
else
{
while ((*context)->parent != node
&& ((*context)->ci_in_parent
== (*context)->parent->children_count-1))
{
*context = (*context)->parent;
}
if ((*context)->parent != node)
*context = (*context)->parent->children[(*context)->ci_in_parent+1];
else
*context = NULL;
}
return ret;
}
/* Same as above, but only return the leaf nodes. */
treenode *
bow_treenode_iterate_leaves_under_node (treenode **context, treenode *node)
{
treenode *ret;
while ((ret = bow_treenode_iterate_all_under_node (context, node))
&& ret->children_count != 0)
;
return ret;
}
/* Return the deepest descendant with a ->NAME that is contained in NAME */
treenode *
bow_treenode_descendant_matching_name (treenode *root, const char *name)
{
int ci;
treenode *tr;
if (!strstr (name, root->name))
return NULL;
for (ci = 0; ci < root->children_count; ci++)
{
if ((tr = bow_treenode_descendant_matching_name
(root->children[ci], name)))
return tr;
}
return root;
}
/* Archiving */
#define BOW_TREENODE_HEADER_STRING "treenode\n"
/* Write a treenode (and all its children) to FP. */
void
bow_treenode_write (treenode *tn, FILE *fp)
{
int i;
/* Write a tag that will later help verify we are reading correctly. */
bow_fwrite_string (BOW_TREENODE_HEADER_STRING, fp);
/* If TN is NULL, write a 0 and return */
if (tn)
bow_fwrite_int (1, fp);
else
{
bow_fwrite_int (0, fp);
return;
}
/* Write the name */
bow_fwrite_string (tn->name, fp);
/* Write the multinomial */
bow_fwrite_int (tn->words_capacity, fp);
bow_fwrite_double (tn->new_words_normalizer, fp);
for (i = 0; i < tn->words_capacity; i++)
bow_fwrite_double (tn->words[i], fp);
/* Write the prior */
bow_fwrite_double (tn->prior, fp);
bow_fwrite_double (tn->new_prior, fp);
/* Write the lambda mixture weights */
bow_fwrite_int (tn->depth, fp);
for (i = 0; i < tn->depth + 2; i++)
{
bow_fwrite_double (tn->lambdas[i], fp);
bow_fwrite_double (tn->new_lambdas[i], fp);
}
/* Write the class distribution */
bow_fwrite_int (tn->classes_capacity, fp);
if (tn->classes_capacity)
{
for (i = 0; i < tn->classes_capacity; i++)
bow_fwrite_double (tn->classes[i], fp);
}
/* Write the children treenodes */
bow_fwrite_int (tn->children_count, fp);
bow_fwrite_int (tn->children_capacity, fp);
bow_fwrite_int (tn->ci_in_parent, fp);
for (i = 0; i < tn->children_count; i++)
bow_treenode_write (tn->children[i], fp);
}
/* Read and return a new treenode (and all its children) from FP. */
treenode *
bow_treenode_new_from_fp (FILE *fp)
{
char *header;
treenode *tn;
int i;
/* Verify that we are starting read from the correct place in the FP */
bow_fread_string (&header, fp);
if (strcmp (header, BOW_TREENODE_HEADER_STRING) != 0)
bow_error ("Trying to read a treenode from bad FILE* location");
bow_free (header);
/* If a NULL treenode was written, return NULL. */
bow_fread_int (&i, fp);
if (i == 0)
return NULL;
tn = bow_malloc (sizeof (treenode));
tn->parent = NULL;
/* Read the name */
bow_fread_string ((char**)&(tn->name), fp);
/* Read the multinomial */
bow_fread_int (&(tn->words_capacity), fp);
tn->words = bow_malloc (tn->words_capacity * sizeof (double));
tn->new_words = bow_malloc (tn->words_capacity * sizeof (double));
bow_fread_double (&(tn->new_words_normalizer), fp);
for (i = 0; i < tn->words_capacity; i++)
{
bow_fread_double (&(tn->words[i]), fp);
tn->new_words[i] = 0;
}
/* Read the prior */
bow_fread_double (&(tn->prior), fp);
bow_fread_double (&(tn->new_prior), fp);
/* Read the lambda mixture weights */
bow_fread_int (&(tn->depth), fp);
tn->lambdas = bow_malloc ((tn->depth + 2) * sizeof (double));
tn->new_lambdas = bow_malloc ((tn->depth + 2) * sizeof (double));
for (i = 0; i < tn->depth + 2; i++)
{
bow_fread_double (&(tn->lambdas[i]), fp);
bow_fread_double (&(tn->new_lambdas[i]), fp);
}
/* Read in the class distribution */
bow_fread_int (&(tn->classes_capacity), fp);
if (tn->classes_capacity)
{
tn->classes = bow_malloc (tn->classes_capacity * sizeof (double));
tn->new_classes = bow_malloc (tn->classes_capacity * sizeof (double));
for (i = 0; i < tn->classes_capacity; i++)
{
bow_fread_double (&(tn->classes[i]), fp);
tn->new_classes[i] = 0;
}
}
else
tn->classes = tn->new_classes = NULL;
/* Read the children treenodes */
bow_fread_int (&(tn->children_count), fp);
bow_fread_int (&(tn->children_capacity), fp);
tn->children = bow_malloc (tn->children_capacity * sizeof (void*));
bow_fread_int (&(tn->ci_in_parent), fp);
for (i = 0; i < tn->children_count; i++)
{
tn->children[i] = bow_treenode_new_from_fp (fp);
tn->children[i]->parent = tn;
assert (tn->children[i]->ci_in_parent == i);
}
/* Initialize the DI_WI_NEW_WORDS later, only if requested. */
tn->di_loo = NULL;
tn->di_wvi_loo = NULL;
tn->new_di_loo = NULL;
tn->new_di_wvi_loo = NULL;
//bow_verbosify (bow_progress, "Read treenode %s\n", tn->name);
return tn;
}
/* Set all of TN's ancestor mixture weights, LAMBDAS, to equal values. */
void
bow_treenode_set_lambdas_uniform (treenode *tn)
{
int i;
double lambda = 1.0 / (tn->depth + 2);
for (i = 0; i < tn->depth + 2; i++)
tn->lambdas[i] = lambda;
}
/* Same as above, but for all leaves in the tree. */
void
bow_treenode_set_lambdas_uniform_all (treenode *tn)
{
treenode *iterator, *leaf;
assert (tn->parent == NULL);
for (iterator = tn; (leaf = bow_treenode_iterate_leaves (&iterator)); )
bow_treenode_set_lambdas_uniform (leaf);
}
/* Set TN's mixture weights, LAMBDAS, to use only the estimates. */
void
bow_treenode_set_lambdas_leaf_only (treenode *tn)
{
int i;
tn->lambdas[0] = 1;
for (i = 1; i < tn->depth + 2; i++)
tn->lambdas[i] = 0;
}
/* Same as above, but for all leaves in the tree. */
void
bow_treenode_set_lambdas_leaf_only_all (treenode *tn)
{
treenode *iterator, *leaf;
assert (tn->parent == NULL);
for (iterator = tn; (leaf = bow_treenode_iterate_leaves (&iterator)); )
bow_treenode_set_lambdas_leaf_only (leaf);
}
/* Add WEIGHT to treenode TN's record of how much probability mass
document DI contributed to TN's NEW_WORDS for the word at DI's
WVI'th word. This mass can later be subtracted to do leave-one-out
calculations. DI_WV_NUM_ENTRIES-1 is the maximum WVI that can be
expected for DI; DI_COUNT-1 is the maximum DI that can be expected;
both are used to know how much space to allocate. */
void
bow_treenode_add_new_loo_for_di_wvi (treenode *tn,
double weight, int di, int wvi,
int di_wv_num_entries, int di_count)
{
int i;
if (tn->new_di_loo == NULL)
{
tn->new_di_loo =
bow_malloc (di_count * sizeof (double));
for (i = 0; i < di_count; i++)
tn->new_di_loo[i] = 0;
}
if (tn->new_di_wvi_loo == NULL)
{
tn->new_di_wvi_loo =
bow_malloc (di_count * sizeof (void*));
for (i = 0; i < di_count; i++)
tn->new_di_wvi_loo[i] = NULL;
}
if (tn->new_di_wvi_loo[di] == NULL)
{
tn->new_di_wvi_loo[di] =
bow_malloc (di_wv_num_entries * sizeof (double));
for (i = 0; i < di_wv_num_entries; i++)
tn->new_di_wvi_loo[di][i] = 0;
}
tn->new_di_loo[di] += weight;
tn->new_di_wvi_loo[di][wvi] += weight;
}
/* Clear all LOO info for treenode TN */
void
bow_treenode_free_loo (treenode *tn, int di_count)
{
int i;
/* For now, clear by freeing */
if (tn->di_loo)
{
bow_free (tn->di_loo);
tn->di_loo = NULL;
}
if (tn->di_wvi_loo)
{
for (i = 0; i < di_count; i++)
{
if (tn->di_wvi_loo[i])
bow_free (tn->di_wvi_loo[i]);
}
bow_free (tn->di_wvi_loo);
tn->di_wvi_loo = NULL;
}
}
/* Same as above, over all nodes of the tree. */
void
bow_treenode_free_loo_all (treenode *root, int di_count)
{
int ci;
bow_treenode_free_loo (root, di_count);
for (ci = 0; ci < root->children_count; ci++)
bow_treenode_free_loo_all (root->children[ci], di_count);
}
/* Clear all LOO info for treenode TN */
void
bow_treenode_free_loo_and_new_loo (treenode *tn, int di_count)
{
int i;
if (tn->di_loo)
{
bow_free (tn->di_loo);
tn->di_loo = NULL;
}
if (tn->new_di_loo)
{
bow_free (tn->new_di_loo);
tn->new_di_loo = NULL;
}
if (tn->di_wvi_loo)
{
for (i = 0; i < di_count; i++)
{
if (tn->di_wvi_loo[i])
bow_free (tn->di_wvi_loo[i]);
}
bow_free (tn->di_wvi_loo);
tn->di_wvi_loo = NULL;
}
if (tn->new_di_wvi_loo)
{
for (i = 0; i < di_count; i++)
{
if (tn->new_di_wvi_loo[i])
bow_free (tn->new_di_wvi_loo[i]);
}
bow_free (tn->new_di_wvi_loo);
tn->new_di_wvi_loo = NULL;
}
}
/* Same as above, over all nodes of the tree. */
void
bow_treenode_free_loo_and_new_loo_all (treenode *root, int di_count)
{
int ci;
bow_treenode_free_loo_and_new_loo (root, di_count);
for (ci = 0; ci < root->children_count; ci++)
bow_treenode_free_loo_and_new_loo_all (root->children[ci], di_count);
}
/* Set the leave-one-out information used for future BOW_TREENODE_PR_WI*()
calculations from the NEW_*_LOO variables, then clear the NEW_*_LOO
variables so they are ready for the next round. */
static void
bow_treenode_set_loo_from_new_loo (treenode *tn, int di_count)
{
bow_treenode_free_loo (tn, di_count);
tn->di_loo = tn->new_di_loo;
tn->di_wvi_loo = tn->new_di_wvi_loo;
tn->new_di_loo = NULL;
tn->new_di_wvi_loo = NULL;
}
/* Normalize the NEW_WORDS distribution, move it into the WORDS array
and zero the NEW_WORDS array. ALPHA is the parameter for the
Dirichlet prior. */
void
bow_treenode_set_words_from_new_words (treenode *tn, double alpha)
{
int wi;
double total_word_count = 0.0;
/* A special case for "Misc" nodes: increase their smoothing. NOTE:
This has no effect if MISC_STAYS_FLAT is non-zero. */
if (strstr (tn->name, "/Misc/"))
alpha++;
/* Calculate the normalizing constant */
for (wi = 0; wi < tn->words_capacity; wi++)
total_word_count += tn->new_words[wi];
total_word_count += alpha * tn->words_capacity;
//assert (total_word_count);
if (total_word_count == 0)
{
alpha = 1.0 / tn->words_capacity;;
total_word_count = 1.0;
}
for (wi = 0; wi < tn->words_capacity; wi++)
{
//assert (tn->new_words[wi] > 0);
assert (tn->new_words[wi] >= 0);
#if !USE_ACCELERATED_EM
#if !MISC_STAYS_FLAT
tn->words[wi] = (alpha + tn->new_words[wi]) / total_word_count;
#else
/* A special case for "Misc" nodes: they stay flat */
if (strstr (tn->name, "/Misc/"))
tn->words[wi] = 1.0 / tn->words_capacity;
else
tn->words[wi] = (alpha + tn->new_words[wi]) / total_word_count;
#endif /* MISC_STAYS_FLAT */
#else
tn->words[wi] =
(((1.0 - EM_ACCELERATION) * tn->words[wi])
+ (EM_ACCELERATION * (alpha + tn->new_words[wi]) / total_word_count));
if (tn->words[wi] < 0)
tn->words[wi] = 0;
#endif /* USE_ACCELERATED_EM */
assert (tn->words[wi] >= 0);
assert (tn->words[wi] <= 1);
tn->new_words[wi] = 0;
}
#if USE_ACCELERATED_EM
/* Renormalize after setting some to zero. */
total_word_count = 0;
for (wi = 0; wi < tn->words_capacity; wi++)
total_word_count += tn->words[wi];
for (wi = 0; wi < tn->words_capacity; wi++)
tn->words[wi] /= total_word_count;
#endif
/* Why was this conditioned on MISC_STAYS_FLAT?
The bow_treenode_pr_wi_loo_local function doesn't work with the
new_words_normalizer equal to zero! */
if (!MISC_STAYS_FLAT || !strstr (tn->name, "/Misc/"))
tn->new_words_normalizer = total_word_count;
else
tn->new_words_normalizer = 0;
/* Also roll over the LOO information. */
bow_treenode_set_loo_from_new_loo (tn, crossbow_docs->length);
}
/* Over all nodes of the tree, normalize the NEW_WORDS distribution,
move it into the WORDS array and zero the NEW_WORDS array. */
void
bow_treenode_set_words_from_new_words_all (treenode *root, double alpha)
{
int ci;
bow_treenode_set_words_from_new_words (root, alpha);
for (ci = 0; ci < root->children_count; ci++)
bow_treenode_set_words_from_new_words_all (root->children[ci], alpha);
}
/* Set NEW_WORDS counts to zero. */
void
bow_treenode_set_new_words_to_zero (treenode *tn)
{
int wi;
for (wi = 0; wi < tn->words_capacity; wi++)
tn->new_words[wi] = 0;
}
/* Same as above, over all nodes of the tree. */
void
bow_treenode_set_new_words_to_zero_all (treenode *root)
{
int ci;
bow_treenode_set_new_words_to_zero (root);
for (ci = 0; ci < root->children_count; ci++)
bow_treenode_set_new_words_to_zero_all (root->children[ci]);
}
/* Set the NEW_WORDS distribution from the addition of the WORDS
distribution and some random noise. NOISE_WEIGHT 0.5 gives equal
weight to the data and the noise. */
void
bow_treenode_set_new_words_from_perturbed_words (treenode *tn,
double noise_weight)
{
int wi;
for (wi = 0; wi < tn->words_capacity; wi++)
tn->new_words[wi] = ((1 - noise_weight) * tn->words[wi]
+ noise_weight * bow_random_01()/tn->words_capacity);
}
/* Same as above, over all nodes of the tree. */
void
bow_treenode_set_new_words_from_perturbed_words_all (treenode *root,
double noise_weight)
{
int ci;
bow_treenode_set_new_words_from_perturbed_words (root, noise_weight);
for (ci = 0; ci < root->children_count; ci++)
bow_treenode_set_new_words_from_perturbed_words_all (root->children[ci],
noise_weight);
}
/* Over all leaves of the tree, set the PRIOR by the results of
smoothing and normalizing the NEW_PRIOR distribution. ALPHA is the
parameter for the Dirichlet prior. */
void
bow_treenode_set_leaf_prior_from_new_prior_all (treenode *root, double alpha)
{
treenode *iterator, *leaf;
double prior_sum = 0;
assert (root->parent == NULL);
for (iterator = root; (leaf = bow_treenode_iterate_leaves (&iterator)); )
{
if (strstr (leaf->name, "/Misc/"))
{
/* Arbitrarily give /Misc/ node the same weight as the average
of the first two children of LEAF's parent. */
assert (leaf->parent->children_count >= 2);
leaf->new_prior = (leaf->parent->children[0]->new_prior
+ leaf->parent->children[1]->new_prior) / 2;
}
prior_sum += leaf->new_prior + alpha;
}
assert (prior_sum);
for (iterator = root; (leaf = bow_treenode_iterate_leaves (&iterator)); )
{
leaf->prior = (leaf->new_prior + alpha) / prior_sum;
leaf->new_prior = 0;
}
}
/* Over all nodes (including interior and root) of the tree, set the
PRIOR by the results of smoothing and normalizing the NEW_PRIOR
distribution. ALPHA is the parameter for the Dirichlet prior. */
void
bow_treenode_set_prior_from_new_prior_all (treenode *root, double alpha)
{
treenode *iterator, *leaf;
double prior_sum = 0;
assert (root->parent == NULL);
for (iterator = root; (leaf = bow_treenode_iterate_all (&iterator)); )
prior_sum += leaf->new_prior + alpha;
assert (prior_sum);
for (iterator = root; (leaf = bow_treenode_iterate_all (&iterator)); )
{
leaf->prior = (leaf->new_prior + alpha) / prior_sum;
leaf->new_prior = 0;
}
}
/* Over all nodes (including interior and root) of the tree, plus one
"extra" quantity (intended for the prior probability of the uniform
distribution), set the PRIOR by the results of smoothing and
normalizing the NEW_PRIOR distribution, and set EXTRA as part of
the normalization. ALPHA is the parameter for the Dirichlet
prior. */
void
bow_treenode_set_prior_and_extra_from_new_prior_all (treenode *root,
double *new_extra,
double *extra,
double alpha)
{
treenode *iterator, *leaf;
double prior_sum = 0;
assert (root->parent == NULL);
for (iterator = root; (leaf = bow_treenode_iterate_all (&iterator)); )
prior_sum += leaf->new_prior + alpha;
prior_sum += *new_extra + alpha;
assert (prior_sum);
for (iterator = root; (leaf = bow_treenode_iterate_all (&iterator)); )
{
leaf->prior = (leaf->new_prior + alpha) / prior_sum;
leaf->new_prior = 0;
}
*extra = (*new_extra + alpha) / prior_sum;
*new_extra = 0;
}
/* Normalize the NEW_LAMBDAS distribution, move it into the LAMBDAS array
and zero the NEW_LAMBDAS array. ALPHA is the parameter for the
Dirichlet prior. */
void
bow_treenode_set_lambdas_from_new_lambdas (treenode *tn, double alpha)
{
int ai;
double total_lambdas_count = 0.0;
#if MISC_STAYS_FLAT
if (strstr (tn->name, "/Misc/"))
{
bow_treenode_set_lambdas_uniform (tn);
for (ai = 0; ai < tn->depth + 2; ai++)
tn->new_lambdas[ai] = 0;
}
#endif
/* Calculate the normalizing constant */
for (ai = 0; ai < tn->depth + 2; ai++)
total_lambdas_count += tn->new_lambdas[ai];
total_lambdas_count += alpha * (tn->depth + 2);
//assert (total_lambdas_count);
if (total_lambdas_count == 0)
{
alpha = 1.0 / (tn->depth + 2);
total_lambdas_count = 1.0;
}
for (ai = 0; ai < tn->depth + 2; ai++)
{
assert (tn->new_lambdas[ai] >= 0);
#if 1 || !USE_ACCELERATED_EM
tn->lambdas[ai] = (alpha + tn->new_lambdas[ai]) / total_lambdas_count;
#else
tn->lambdas[ai] =
(((1.0 - EM_ACCELERATION) * tn->lambdas[ai])
+ (EM_ACCELERATION * (alpha + tn->new_lambdas[ai])
/ total_lambdas_count));
if (tn->lambdas[ai] < 0)
tn->lambdas[ai] = 0;
#endif
assert (tn->lambdas[ai] >= 0);
assert (tn->lambdas[ai] <= 1);
tn->new_lambdas[ai] = 0;
}
}
/* Set the CLASSES distribution to uniform, allocating space for it if
necessary */
void
bow_treenode_set_classes_uniform (treenode *tn, int classes_capacity)
{
int ci;
if (tn->classes_capacity == 0)
{
tn->classes_capacity = classes_capacity;
tn->classes = bow_malloc (classes_capacity * sizeof (double));
tn->new_classes = bow_malloc (classes_capacity * sizeof (double));
}
assert (classes_capacity == tn->classes_capacity);
for (ci = 0; ci < classes_capacity; ci++)
{
tn->classes[ci] = 1.0 / classes_capacity;
tn->new_classes[ci] = 0.0;
}
}
/* Normalize the NEW_CLASSES distribution, move it into the CLASSES array
and zero the NEW_CLASSES array. ALPHA is the parameter for the
Dirichlet prior. */
void
bow_treenode_set_classes_from_new_classes (treenode *tn, double alpha)
{
int ci;
double total_classes_count = 0;
assert (tn->classes_capacity > 0);
for (ci = 0; ci < tn->classes_capacity; ci++)
total_classes_count += tn->new_classes[ci];
total_classes_count += alpha * tn->classes_capacity;
if (total_classes_count == 0)
{
alpha = 1.0 / tn->classes_capacity;
total_classes_count = 1.0;
}
for (ci = 0; ci < tn->classes_capacity; ci++)
{
tn->classes[ci] = (alpha + tn->new_classes[ci]) / total_classes_count;
tn->new_classes[ci] = 0;
}
}
/* Return the log-probability of node TN's WORD distribution having
produced the word vector WV. */
double
bow_treenode_log_local_prob_of_wv (treenode *tn, bow_wv *wv)
{
int wvi;
double log_prob = 0;
for (wvi = 0; wvi < wv->num_entries; wvi++)
log_prob += wv->entry[wvi].count * log (tn->words[wv->entry[wvi].wi]);
return log_prob;
}
/* Return the expected complete log likelihood of node TN's word
distribution having produced the word vector WV. */
double
bow_treenode_complete_log_prob_of_wv (treenode *tn, bow_wv *wv)
{
int wvi, ai;
double log_prob = 0;
treenode *ancestor;
double *ancestor_membership;
double ancestor_membership_normalizer;
ancestor_membership = alloca ((tn->depth + 2) * sizeof (double));
for (wvi = 0; wvi < wv->num_entries; wvi++)
{
ancestor_membership_normalizer = 0;
for (ancestor = tn, ai = 0; ancestor;
ancestor = ancestor->parent, ai++)
{
ancestor_membership[ai] = (tn->lambdas[ai]
* ancestor->words[wv->entry[wvi].wi]);
ancestor_membership_normalizer += ancestor_membership[ai];
}
ancestor_membership[ai] = tn->lambdas[ai] * 1.0 / tn->words_capacity;
ancestor_membership_normalizer += ancestor_membership[ai];
for (ancestor = tn, ai = 0; ancestor;
ancestor = ancestor->parent, ai++)
{
log_prob += (wv->entry[wvi].count
* (ancestor_membership[ai]
/ ancestor_membership_normalizer)
* log (ancestor->words[wv->entry[wvi].wi]));
}
log_prob += (wv->entry[wvi].count
* (ancestor_membership[ai]
/ ancestor_membership_normalizer)
* log (1.0 / tn->words_capacity));
}
assert (log_prob == log_prob);
return log_prob;
}
/* Return the probability of word WI in LEAF, using the hierarchical
mixture */
double
bow_treenode_pr_wi (treenode *node, int wi)
{
int i;
treenode *ancestor;
double ret = 0;
if (node->children_count == 0)
{
/* NODE is a leaf. Return the vertical mixture using shrinkage */
for (ancestor = node, i = 0;
ancestor; ancestor = ancestor->parent, i++)
ret += node->lambdas[i] * ancestor->words[wi];
/* Add in the uniform distribution */
ret += node->lambdas[i] / node->words_capacity;
}
else
{
/* NODE is an interior node of the tree. Return a weighted
average of the leaves under NODE. */
double prior_sum = 0;
treenode *iterator, *leaf;
for (iterator = node;
(leaf = bow_treenode_iterate_leaves_under_node (&iterator, node)); )
{
prior_sum += leaf->prior;
ret += leaf->prior * bow_treenode_pr_wi (leaf, wi);
}
ret /= prior_sum;
}
return ret;
}
/* Return the probability of word WI in node TN, but with the
probability mass of document LOO_DI removed. */
double
bow_treenode_pr_wi_loo_local (treenode *tn, int wi,
int loo_di, int loo_wvi)
{
double ret;
double denominator;
/* If there is no LOO information, return the non-LOO estimate. */
if (!(tn->di_loo) || !(tn->di_wvi_loo) || !(tn->di_wvi_loo[loo_di]))
ret = tn->words[wi];
else
{
#if 0
double foo1 = ((tn->words[wi] * tn->new_words_normalizer)
- tn->di_wvi_loo[loo_di][loo_wvi]);
double foo2 = (tn->new_words_normalizer - tn->di_loo[loo_di]);
if (foo1 < -1e-14)
bow_error ("Foo1 %g orig %.18f minus %.18f",
foo1,
(tn->words[wi] * tn->new_words_normalizer),
tn->di_wvi_loo[loo_di][loo_wvi]);
assert (foo2 >= -1e-14);
#endif
denominator = (tn->new_words_normalizer - tn->di_loo[loo_di]);
assert (denominator >= 0);
/* Make sure it is non-negative, but account for round-off error */
assert ((tn->words[wi] * tn->new_words_normalizer)
- tn->di_wvi_loo[loo_di][loo_wvi] >= -1e-7);
if (denominator)
ret = (((tn->words[wi] * tn->new_words_normalizer)
- tn->di_wvi_loo[loo_di][loo_wvi])
/ denominator);
else
/* Without this document, there is no training data for this class.
Return a uniform distribution. */
ret = 1.0 / tn->words_capacity;
if (ret < 0)
{
/* Account for roundoff error */
assert (ret > -1e-14);
ret = 0;
}
}
assert (ret >= 0);
assert (ret <= 1);
assert (tn); /* to keep tn available in debugger */
assert (loo_di >= 0 && loo_wvi >= 0);
return ret;
}
/* Return the probability of word WI in LEAF, using the hierarchical
mixture, but with the probability mass of document LOO_DI removed. */
double
bow_treenode_pr_wi_loo (treenode *tn, int wi,
int loo_di, int loo_wvi)
{
int i;
treenode *ancestor;
double ret = 0;
if (tn->children_count == 0)
{
/* TN is a leaf. Return the vertical mixture using shrinkage */
for (ancestor = tn, i = 0;
ancestor; ancestor = ancestor->parent, i++)
ret += (tn->lambdas[i] *
bow_treenode_pr_wi_loo_local (ancestor, wi, loo_di, loo_wvi));
/* Add in the uniform distribution */
ret += tn->lambdas[i] / tn->words_capacity;
}
else
{
/* TN is an interior node of the tree. Return a weighted
average of the leaves under TN. */
double prior_sum = 0;
treenode *iterator, *leaf;
for (iterator = tn;
(leaf = bow_treenode_iterate_leaves_under_node (&iterator, tn)); )
{
prior_sum += leaf->prior;
ret += leaf->prior * bow_treenode_pr_wi_loo (leaf, wi,
loo_di, loo_wvi);
}
ret /= prior_sum;
}
assert (ret > 0);
assert (ret < 1);
return ret;
}
/* Return the prior probability of TN being in a path selected for
generating a document. */
double
bow_treenode_prior (treenode *tn)
{
if (tn->children_count != 0)
{
/* TN is an interior node of the tree; sum the priors of the
leaves under it. */
treenode *iterator, *leaf;
double ret = 0;
for (iterator = tn;
(leaf = bow_treenode_iterate_leaves_under_node (&iterator, tn)); )
{
ret += leaf->prior;
}
return ret;
}
/* TN is a leaf; simply return its prior. */
return tn->prior;
}
/* Return the log-probability of node TN's WORD distribution having
produced the word vector WV. */
double
bow_treenode_log_prob_of_wv (treenode *tn, bow_wv *wv)
{
int wvi;
double log_prob = 0;
for (wvi = 0; wvi < wv->num_entries; wvi++)
log_prob += (wv->entry[wvi].count
* log (bow_treenode_pr_wi (tn, wv->entry[wvi].wi)));
return log_prob;
}
/* Same as above, but return a probability instead of a log-probability */
double
bow_treenode_prob_of_wv (treenode *tn, bow_wv *wv)
{
return exp (bow_treenode_log_prob_of_wv (tn, wv));
}
/* Return the log-probability of node TN's WORD distribution having
produced the word vector WV, but with document DI removed from TN's
WORD distribution. */
double
bow_treenode_log_prob_of_wv_loo (treenode *tn, bow_wv *wv, int loo_di)
{
int wvi;
double log_prob = 0;
for (wvi = 0; wvi < wv->num_entries; wvi++)
log_prob += (wv->entry[wvi].count
* log (bow_treenode_pr_wi_loo (tn, wv->entry[wvi].wi,
loo_di, wvi)));
assert (log_prob < 0);
return log_prob;
}
/* Return the local log-probability of node TN's WORD distribution
having produced the word vector WV, but with document DI removed
from TN's WORD distribution. */
double
bow_treenode_log_local_prob_of_wv_loo (treenode *tn, bow_wv *wv, int loo_di)
{
int wvi;
double log_prob = 0;
for (wvi = 0; wvi < wv->num_entries; wvi++)
log_prob += (wv->entry[wvi].count
* log (bow_treenode_pr_wi_loo_local (tn, wv->entry[wvi].wi,
loo_di, wvi)));
assert (log_prob < 0);
return log_prob;
}
/* Return the number of leaves under (and including) TN */
int
bow_treenode_leaf_count (treenode *tn)
{
if (tn->children_count == 0)
return 1;
else
{
int ci, lc = 0;
for (ci = 0; ci < tn->children_count; ci++)
lc += bow_treenode_leaf_count (tn->children[ci]);
return lc;
}
}
/* Return the number of tree nodes under (and including) TN */
int
bow_treenode_node_count (treenode *tn)
{
if (tn->children_count == 0)
return 1;
else
{
int ci, lc = 0;
for (ci = 0; ci < tn->children_count; ci++)
lc += bow_treenode_node_count (tn->children[ci]);
/* Plus one for TN itself. */
return lc + 1;
}
}
/* Return an array of words with their associated likelihood ratios,
calculated relative to its siblings. */
bow_wa *
bow_treenode_word_likelihood_ratios (treenode *tn)
{
int wi, ci;
bow_wa *wa;
double pr_wi_given_tn;
double pr_wi_given_not_tn;
double lr;
if (tn->parent == NULL)
return NULL;
wa = bow_wa_new (tn->words_capacity+2);
for (wi = 0; wi < tn->words_capacity; wi++)
{
pr_wi_given_tn = bow_treenode_pr_wi (tn, wi);
pr_wi_given_not_tn = 0;
for (ci = 0; ci < tn->parent->children_count; ci++)
{
if (ci != tn->ci_in_parent)
pr_wi_given_not_tn +=
(bow_treenode_pr_wi (tn->parent->children[ci], wi)
/ (tn->parent->children_count - 1));
}
if (pr_wi_given_tn == 0)
lr = -1;
else if (pr_wi_given_not_tn == 0)
lr = 1;
else
lr = (pr_wi_given_tn
* log (pr_wi_given_tn / pr_wi_given_not_tn));
//assert (lr < 1);
bow_wa_append (wa, wi, lr);
}
return wa;
}
/* Return an array of words with their associated likelihood ratios,
calculated relative to all the leaves. */
bow_wa *
bow_treenode_word_leaf_likelihood_ratios (treenode *tn)
{
int wi, leaf_count;
bow_wa *wa;
double pr_wi_given_tn;
double pr_wi_given_not_tn;
double lr;
treenode *root, *iterator, *leaf;
if (tn->children_count != 0)
return NULL;
root = tn;
while (root->parent)
root = root->parent;
leaf_count = bow_treenode_leaf_count (root);
wa = bow_wa_new (tn->words_capacity+2);
for (wi = 0; wi < tn->words_capacity; wi++)
{
//pr_wi_given_tn = tn->words[wi];
pr_wi_given_tn = bow_treenode_pr_wi (tn, wi);
pr_wi_given_not_tn = 0;
for (iterator = root; (leaf = bow_treenode_iterate_leaves (&iterator)); )
{
if (leaf != tn)
pr_wi_given_not_tn += (bow_treenode_pr_wi (leaf, wi)
/ (leaf_count-1));
//pr_wi_given_not_tn += leaf->words[wi] / (leaf_count - 1);
}
if (pr_wi_given_tn == 0)
lr = -1;
else if (pr_wi_given_not_tn == 0)
lr = 1;
else
lr = (pr_wi_given_tn
* log (pr_wi_given_tn / pr_wi_given_not_tn));
//assert (lr < 1);
bow_wa_append (wa, wi, lr);
}
return wa;
}
/* Return an array of words with their associated odds ratios,
calculated relative to all the leaves. */
bow_wa *
bow_treenode_word_leaf_odds_ratios (treenode *tn)
{
int wi, leaf_count;
bow_wa *wa;
double pr_wi_given_tn;
double pr_wi_given_not_tn;
double lr;
treenode *root, *iterator, *leaf;
if (tn->children_count != 0)
return NULL;
root = tn;
while (root->parent)
root = root->parent;
leaf_count = bow_treenode_leaf_count (root);
wa = bow_wa_new (tn->words_capacity+2);
for (wi = 0; wi < tn->words_capacity; wi++)
{
pr_wi_given_tn = tn->words[wi];
pr_wi_given_not_tn = 0;
for (iterator = root; (leaf = bow_treenode_iterate_leaves (&iterator)); )
{
if (leaf != tn)
pr_wi_given_not_tn += leaf->words[wi] / (leaf_count - 1);
}
lr = (/* pr_wi_given_tn * */
log ((pr_wi_given_tn * (1 - pr_wi_given_not_tn))
/ (pr_wi_given_not_tn * (1 - pr_wi_given_tn))));
bow_wa_append (wa, wi, lr);
}
return wa;
}
/* Return an array of words with their associated likelihood ratios,
calculated relative to all the leaves. */
bow_wa *
bow_treenode_word_leaf_mean_ratios (treenode *tn)
{
int wi, leaf_count;
bow_wa *wa;
double pr_wi_given_tn;
double pr_wi;
double lr;
treenode *root, *iterator, *leaf;
if (tn->children_count != 0)
return NULL;
root = tn;
while (root->parent)
root = root->parent;
leaf_count = bow_treenode_leaf_count (root);
wa = bow_wa_new (tn->words_capacity+2);
for (wi = 0; wi < tn->words_capacity; wi++)
{
pr_wi_given_tn = tn->words[wi];
pr_wi = 0;
for (iterator = root; (leaf = bow_treenode_iterate_leaves (&iterator)); )
{
pr_wi += leaf->words[wi] / leaf_count;
}
assert (pr_wi > 0);
lr = pr_wi_given_tn / pr_wi;
bow_wa_append (wa, wi, lr);
}
return wa;
}
/* Print the NUM_TO_PRINT words with highest likelihood ratios,
calculated relative to its siblings. */
void
bow_treenode_word_likelihood_ratios_print (treenode *tn, int num_to_print)
{
bow_wa *wa;
wa = bow_treenode_word_likelihood_ratios (tn);
if (wa)
{
bow_wa_sort (wa);
bow_wa_fprintf (wa, stdout, num_to_print);
bow_wa_free (wa);
}
}
/* Print the NUM_TO_PRINT words with highest likelihood ratios,
calculated relative to all the leaves. */
void
bow_treenode_word_leaf_likelihood_ratios_print (treenode *tn, int num_to_print)
{
bow_wa *wa;
wa = bow_treenode_word_leaf_likelihood_ratios (tn);
if (wa)
{
bow_wa_sort (wa);
bow_wa_fprintf (wa, stdout, num_to_print);
bow_wa_free (wa);
}
}
/* Print the NUM_TO_PRINT words with highest odds ratios,
calculated relative to all the leaves. */
void
bow_treenode_word_leaf_odds_ratios_print (treenode *tn, int num_to_print)
{
bow_wa *wa;
wa = bow_treenode_word_leaf_odds_ratios (tn);
if (wa)
{
bow_wa_sort (wa);
bow_wa_fprintf (wa, stdout, num_to_print);
bow_wa_free (wa);
}
}
/* Same as above, for all nodes in the tree. */
void
bow_treenode_word_likelihood_ratios_print_all (treenode *tn, int num_to_print)
{
int ci;
printf ("%s\nprior=%g\n", tn->name, tn->prior);
bow_treenode_word_likelihood_ratios_print (tn, num_to_print);
for (ci = 0; ci < tn->children_count; ci++)
bow_treenode_word_likelihood_ratios_print_all (tn->children[ci],
num_to_print);
}
/* Return a bow_wa array of words with their associated probabilities */
bow_wa *
bow_treenode_word_probs (treenode *tn)
{
int wi;
bow_wa *wa;
wa = bow_wa_new (tn->words_capacity+2);
for (wi = 0; wi < tn->words_capacity; wi++)
bow_wa_append (wa, wi, tn->words[wi]);
return wa;
}
/* Print the NUM_TO_PRINT words with highest probability */
void
bow_treenode_word_probs_print (treenode *tn, int num_to_print)
{
bow_wa *wa;
wa = bow_treenode_word_probs (tn);
if (wa)
{
bow_wa_sort (wa);
bow_wa_fprintf (wa, stdout, num_to_print);
bow_wa_free (wa);
}
}
/* Same as above, for all nodes in the tree. */
void
bow_treenode_word_probs_print_all (treenode *tn, int num_to_print)
{
int ci;
printf ("%s\n", tn->name);
if (tn->children_count == 0)
printf (" prior=%g\n", tn->prior);
bow_treenode_word_probs_print (tn, num_to_print);
for (ci = 0; ci < tn->children_count; ci++)
bow_treenode_word_probs_print_all (tn->children[ci], num_to_print);
}
/* Print most probable words in one line, and only if parent's
WKL is high enough */
void
bow_treenode_keywords_print (treenode *tn, FILE *fp)
{
bow_wa *wa;
int wai;
//double kldiv;
if (tn->parent == NULL)
return;
//if (bow_treenode_children_weighted_kl_div (tn->parent) < 500) return;
#if 0
if ((kldiv = bow_treenode_pair_kl_div (tn, tn->parent)) < 0.5)
{
fprintf (fp, "alias %s %s\n",
tn->name, tn->parent->name);
bow_verbosify (bow_progress, "%s kldiv versus parent %g SKIP\n",
tn->name, kldiv);
return;
}
else
{
bow_verbosify (bow_progress, "%s kldiv versus parent %g\n",
tn->name, kldiv);
}
for (ci = 0; ci < tn->ci_in_parent; ci++)
{
if (((kldiv = bow_treenode_pair_kl_div
(tn, tn->parent->children[ci]))
< 0.5))
{
fprintf (fp, "alias %s %s\n",
tn->name, tn->parent->children[ci]->name);
bow_verbosify (bow_progress, "%s %s kldiv versus sibling %g SKIP\n",
tn->name, tn->parent->children[ci]->name, kldiv);
return;
}
else
{
bow_verbosify (bow_progress, "%s %s kldiv versus sibling %g\n",
tn->name, tn->parent->children[ci]->name, kldiv);
}
}
#endif
wa = bow_treenode_word_probs (tn);
if (wa)
{
fprintf (fp, "%s %g ", tn->name,
bow_treenode_pair_kl_div (tn, tn->parent));
bow_wa_sort (wa);
for (wai = 0; wai < 10; wai++)
fprintf (fp, "%s ", bow_int2word (wa->entry[wai].wi));
fprintf (fp, "\n");
bow_wa_free (wa);
}
}
/* Same as above, but for TN and all treenodes under TN */
void
bow_treenode_keywords_print_all (treenode *tn, FILE *fp)
{
int ci;
bow_treenode_keywords_print (tn, fp);
for (ci = 0; ci < tn->children_count; ci++)
bow_treenode_keywords_print_all (tn->children[ci], fp);
}
/* Print the (normalized) probability of word WI in each of the nodes
of the tree rooted at ROOT. */
void
bow_treenode_normalized_word_prob_all_print (treenode *root, int wi)
{
int leaf_count;
double *nodes, nodes_total;
int ni;
treenode *iterator, *node;
leaf_count = bow_treenode_leaf_count (root);
nodes = alloca (sizeof (double) * leaf_count);
nodes_total = 0;
for (iterator = root, ni = 0;
(node=bow_treenode_iterate_all (&iterator));
ni++)
{
nodes[ni] = node->words[wi];
nodes_total += nodes[ni];
}
for (iterator = root, ni = 0;
(node=bow_treenode_iterate_all (&iterator));
ni++)
printf ("%10f %s\n", nodes[ni] / nodes_total, node->name);
}
/* Print the word distribution for each leaf to a separate file, each
file having prefix FILENAME_PREFIX. Use vertical mixture if
SHRINKAGE is non-zero. */
void
bow_treenode_print_all_word_probabilities_all (const char *filename_prefix,
int shrinkage)
{
int li, wi;
char *s;
treenode *iterator, *leaf;
char leafname[BOW_MAX_WORD_LENGTH];
char filename[BOW_MAX_WORD_LENGTH];
FILE *fp;
double pr_w;
bow_verbosify (bow_progress, "Starting word probability printing\n");
for (iterator = crossbow_root, li = 0;
(leaf = bow_treenode_iterate_leaves (&iterator));
li++)
{
strcpy (leafname, leaf->name);
/* Convert '/' to '-' */
for (s = leafname; *s; s++)
if (*s == '/')
*s = '-';
sprintf (filename, "%s-%s", filename_prefix, leafname);
fp = bow_fopen (filename, "w");
for (wi = 0; wi < leaf->words_capacity; wi++)
{
if (shrinkage)
pr_w = bow_treenode_pr_wi (leaf, wi);
else
pr_w = leaf->words[wi];
fprintf (fp, "%f %s\n", pr_w, bow_int2word (wi));
}
fclose (fp);
}
}
/* Return the "KL Divergence to the Mean" among the children of TN */
double
bow_treenode_children_kl_div (treenode *tn)
{
double *mean;
double kldiv;
int wi, ci;
if (tn->children_count < 2)
return 0;
/* Calculate the mean distribution */
mean = bow_malloc (tn->words_capacity * sizeof (double));
for (wi = 0; wi < tn->words_capacity; wi++)
{
mean[wi] = 0;
for (ci = 0; ci < tn->children_count; ci++)
mean[wi] += tn->children[ci]->words[wi];
mean[wi] /= tn->children_count;
}
/* Calculate "KL Divergence to the Mean" for each child. */
kldiv = 0;
for (ci = 0; ci < tn->children_count; ci++)
{
for (wi = 0; wi < tn->words_capacity; wi++)
{
/* Testing for tn->children[ci]->words[wi] is legitimate.
Testing for mean[wi] is a concession to round-off error */
if (tn->children[ci]->words[wi] && mean[wi])
kldiv += (tn->children[ci]->words[wi]
* log (tn->children[ci]->words[wi] / mean[wi]));
//assert (kldiv < 10);
}
}
bow_free (mean);
kldiv /= tn->children_count;
return kldiv;
}
/* Return the weighted "KL Divergence to the mean among the children
of TN" multiplied by the number of words of training data in the
children. */
double
bow_treenode_children_weighted_kl_div (treenode *tn)
{
double weight = 0;
int ci;
for (ci = 0; ci < tn->children_count; ci++)
weight += tn->children[ci]->new_words_normalizer;
return weight * bow_treenode_children_kl_div (tn);
}
/* Return the "KL Divergence to the mean" between TN1 and TN2. */
double
bow_treenode_pair_kl_div (treenode *tn1, treenode *tn2)
{
double *mean;
double kldiv;
int wi;
/* Calculate the mean distribution */
mean = bow_malloc (tn1->words_capacity * sizeof (double));
for (wi = 0; wi < tn1->words_capacity; wi++)
{
mean[wi] = 0;
mean[wi] += tn1->words[wi];
mean[wi] += tn2->words[wi];
mean[wi] /= 2;
}
/* Calculate "KL Divergence to the Mean" for each one. */
kldiv = 0;
for (wi = 0; wi < tn1->words_capacity; wi++)
{
/* Testing for tn->children[ci]->words[wi] is legitimate.
Testing for mean[wi] is a concession to round-off error */
if (mean[wi])
{
if (tn1->words[wi])
kldiv += tn1->words[wi] * log (tn1->words[wi] / mean[wi]);
if (tn2->words[wi])
kldiv += tn2->words[wi] * log (tn2->words[wi] / mean[wi]);
}
}
bow_free (mean);
kldiv /= 2;
return kldiv;
}
/* Same as above, but multiply by the number of words in TN1 and TN2. */
double
bow_treenode_pair_weighted_kl_div (treenode *tn1, treenode *tn2)
{
return ((tn1->new_words_normalizer + tn2->new_words_normalizer)
* bow_treenode_pair_kl_div (tn1, tn2));
}
/* Return non-zero if any of TN's children are leaves */
int
bow_treenode_is_leaf_parent (treenode *tn)
{
int ci;
for (ci = 0; ci < tn->children_count; ci++)
if (tn->children[ci]->children_count == 0)
return 1;
return 0;
}
|