1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
|
/* Weight-setting and scoring implementation for TFIDF. */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Andrew Kachites McCallum <mccallum@cs.cmu.edu>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#if !HAVE_LOG2F
#define log2f log
#endif
#if !HAVE_SQRTF
#define sqrtf sqrt
#endif
/* The number of documents with non-zero dot-product with the query.
Set in bow_tfidf_score(). */
int bow_tfidf_num_hit_documents;
#define DOING_LOG_COUNTS 1
/* Function to assign TFIDF weights to each element of each document
vector. */
static void
bow_tfidf_set_weights (bow_barrel *barrel)
{
int wi; /* a "word index" into WI2DVF */
int max_wi; /* the highest "word index" in WI2DVF. */
int ndocs; /* number of train documents looked at */
double idf; /* The IDF factor for a word */
bow_dv *dv; /* the "document vector" at index WI */
double df; /* "document frequency" */
#if 0
int total_word_count; /* total "document frequency" over all words */
#endif
int dvi; /* an index into the DV */
bow_cdoc *cdoc;
bow_verbosify (bow_progress, "Setting weights over words: ");
max_wi = MIN(barrel->wi2dvf->size, bow_num_words());
#if 0
/* For certain cases we need to loop over all dv's to compute the
total number of word counts across all words and all documents. */
/* xxx Shouldn't this be changed, and put in the `for(wi..' loop below? */
if (((bow_params_tfidf*)(barrel->method->params))->df_counts
== bow_tfidf_occurrences)
{
total_word_count = 0;
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
/* We have the document information, so we can determine which
documents are part the the training set. */
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_cdocs_di2doc (barrel->cdocs, dv->entry[dvi].di);
if (cdoc->type == model)
total_word_count += dv->entry[dvi].count;
}
}
}
#endif
/* figure out the number of training documents */
for (wi=ndocs=0; wi<barrel->cdocs->length; wi++) {
cdoc = bow_array_entry_at_index (barrel->cdocs, wi);
if (cdoc->type == bow_doc_train) {
ndocs++;
}
}
/* Loop over all vectors of documents (i.e. each word), calculate
the IDF, then set the weights */
for (wi = 0; wi < max_wi; wi++)
{
/* Get the document vector for this word WI */
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
/* Calculate the IDF, the "inverse document frequency". */
/* First calculate document frequency. */
df = 0;
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs, dv->entry[dvi].di);
if (cdoc->type != bow_doc_train)
continue;
if (((bow_params_tfidf*)(barrel->method->params))->df_counts
== bow_tfidf_occurrences)
{
/* Make DF be the number of documents in which word WI occurs
at least once. (We can't just set it to DV->LENGTH because
we have to check to make sure each document is part of the
model. */
df++;
}
else if (((bow_params_tfidf*)(barrel->method->params))->df_counts
== bow_tfidf_words)
{
/* Make DF be the total number of times word WI appears
in any document. */
df += dv->entry[dvi].count;
}
else
bow_error ("Bad TFIDF parameter df_counts.");
}
/* Set IDF from DF. */
if (df == 0)
{
/* There are no training documents with this word - ignore */
idf = 0.0;
}
else
{
if (((bow_params_tfidf*)(barrel->method->params))->df_transform
== bow_tfidf_log)
idf = log2f (ndocs / df);
else if (((bow_params_tfidf*)(barrel->method->params))->df_transform
== bow_tfidf_sqrt)
idf = sqrtf (ndocs / df);
else if (((bow_params_tfidf*)(barrel->method->params))->df_transform
== bow_tfidf_straight)
idf = ndocs / df;
else
{
idf = 0; /* to avoid gcc warning */
bow_error ("Bad TFIDF parameter df_transform.");
}
}
assert (idf == idf); /* Make sure we don't have NaN. */
/* Now loop through all the elements, setting their weights */
for (dvi = 0; dvi < dv->length; dvi++)
#if DOING_LOG_COUNTS
dv->entry[dvi].weight = log (dv->entry[dvi].count + 1) * idf;
#else
dv->entry[dvi].weight = dv->entry[dvi].count * idf;
#endif
/* Record this word's idf */
dv->idf = idf;
if (wi % 10 == 0)
bow_verbosify (bow_progress, "\b\b\b\b\b\b%6d", max_wi - wi - 1);
}
bow_verbosify (bow_progress, "\n");
}
/* Function to fill an array of the best matches to the document
described by wv from the corpus in wi2dvf. There are 'best' elements
in this array, in decreaseing order of their score. Nothing we can
do if the we need more space to hold docs with the same scores as the
final document in this list. The number of elements in the array is
returned. The cdocs array is checked to make sure the
document is in the model before getting it's vector product with
the wv. Also, if the length field in cdocs is non-zero, then the
product is divided by that length. */
int
bow_tfidf_score_old (bow_barrel *barrel, bow_wv *query_wv,
bow_score *scores, int best, int loo_class)
{
bow_dv_heap *heap;
bow_cdoc *doc;
int num_scores = 0; /* How many elements are in this array */
int current_di, wi, current_index, i;
double current_score = 0.0, target_weight;
float idf;
#if 0
if (loo_class >= 0)
bow_error ("PrInd cannot implement Leave-One-Out scoring.");
#endif
/* Set the weights in the QUERY_WV. Note: this is duplication of
effort, since it was already done, but it was done incorrectly
before, without the IDF. */
bow_wv_set_weights_to_count_times_idf (query_wv, barrel);
bow_wv_normalize_weights_by_vector_length (query_wv);
if (query_wv->normalizer == 0)
bow_error ("You forgot to set the weight normalizer of the QUERY_WV");
/* Create the Heap of vectors of documents */
heap = bow_make_dv_heap_from_wv (barrel->wi2dvf, query_wv);
/* Keep looking at document/word entries until the heap is emptied */
while (heap->length > 0)
{
/* Get the index of the document we're currently working on */
current_di = heap->entry[0].current_di;
/* Get the document structure */
doc = bow_cdocs_di2doc (barrel->cdocs, current_di);
/* If it's not a model document, then move on to next one */
if (doc->type != bow_doc_train)
{
do
{
bow_dv_heap_update (heap);
}
while ((current_di == heap->entry[0].current_di)
&& (heap->length > 0));
/* Try again */
continue;
}
/* Reset the index into out word vector */
current_index = 0;
/* Reset the weight */
current_score = 0.0;
/* Loop over all the words in this document, summing up the score */
do
{
wi = heap->entry[0].wi;
target_weight =
heap->entry[0].dv->entry[heap->entry[0].index].weight;
/* We don't include NORMALIZER here because we multiple by it
all at once below. */
/* Find the correspoding word in our word vector */
while (wi > (query_wv->entry[current_index].wi))
current_index++;
assert (wi == query_wv->entry[current_index].wi);
/* Put in the contribution of this word */
/* xxx Under what conditions will IDF be zero? Does the
right thing happen? */
idf = heap->entry[0].dv->idf;
assert (idf == idf); /* testing for NaN */
/* xxx Why was this here? assert (idf && idf > 0); */
current_score +=
(target_weight
* (query_wv->entry[current_index].weight
* query_wv->normalizer));
/* A test to make sure we haven't got NaN. */
assert (current_score == current_score);
/* Now we need to update the heap - moving this element on to its
new position */
bow_dv_heap_update (heap);
}
while ((current_di == heap->entry[0].current_di)
&& (heap->length > 0));
/* It is OK to normalize here instead of inside do-while loop
above because we are summing the weights, and we can just
factor out the NORMALIZER. */
assert (doc->normalizer > 0);
current_score *= doc->normalizer;
assert (current_score == current_score); /* checking for NaN */
/* Store the result in the SCORES array */
/* If we haven't filled the list, or we beat the last item in the list */
if ((num_scores < best)
|| (scores[num_scores - 1].weight < current_score))
{
/* We're going to search up the list comparing element i-1 with
our current score and moving it down the list if it's worse */
if (num_scores < best)
{
i = num_scores;
num_scores++;
}
else
i = num_scores - 1;
/* Shift down all the bits of the array that need shifting */
for (; (i > 0) && (scores[i - 1].weight < current_score); i--)
scores[i] = scores[i-1];
/* Insert our new score */
scores[i].weight = current_score;
scores[i].di = current_di;
}
}
bow_free (heap);
/* All done - return the number of elements we have */
return num_scores;
}
int
bow_tfidf_score (bow_barrel *barrel, bow_wv *query_wv,
bow_score *scores, int scores_size, int loo_class)
{
int num_scores = 0; /* How many elements are in this array */
int ci, i;
float *lscores;
int **wis;
int wvi, dvi;
bow_cdoc *cdoc;
int num_hit_documents = 0;
#if 0
if (loo_class >= 0)
bow_error ("PrInd cannot implement Leave-One-Out scoring.");
#endif
/* Yuck. This is inefficient. */
lscores = bow_malloc (barrel->cdocs->length * sizeof (float));
wis = bow_malloc (barrel->cdocs->length * sizeof (int*));
for (i = 0; i < barrel->cdocs->length; i++)
{
lscores[i] = 0;
wis[i] = NULL;
}
/* Set the weights in the QUERY_WV. Note: this is duplication of
effort, since it was already done, but it was done incorrectly
before, without the IDF. */
#if DOING_LOG_COUNTS
bow_wv_set_weights_to_log_count_times_idf (query_wv, barrel);
#else
bow_wv_set_weights_to_count_times_idf (query_wv, barrel);
#endif
bow_wv_normalize_weights_by_vector_length (query_wv);
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
{
bow_dv *dv = bow_wi2dvf_dv (barrel->wi2dvf, query_wv->entry[wvi].wi);
/* If the model doesn't know about this word, skip it. */
if (!dv)
continue;
/* Loop over all documents/classes that contain word WI,
and increment their score. */
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs, dv->entry[dvi].di);
lscores[dv->entry[dvi].di] += ((query_wv->entry[wvi].weight
* query_wv->normalizer)
* (dv->entry[dvi].weight
* cdoc->normalizer));
if (wis[dv->entry[dvi].di] == NULL)
{
int j;
wis[dv->entry[dvi].di] = bow_malloc ((query_wv->num_entries+1)
* sizeof (int));
for (j = 0; j < (query_wv->num_entries+1); j++)
wis[dv->entry[dvi].di][j] = -1;
}
i = 0;
while (wis[dv->entry[dvi].di][i] >= 0)
i++;
assert (i <= query_wv->num_entries);
wis[dv->entry[dvi].di][i] = query_wv->entry[wvi].wi;
/* Why was this here?
assert (wis[dv->entry[dvi].di][i] != 1); */
}
}
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
if (lscores[ci] == 0)
continue;
num_hit_documents++;
/* Store the result in the SCORES array */
/* If we haven't filled the list, or we beat the last item in the list */
if ((num_scores < scores_size)
|| (scores[num_scores - 1].weight < lscores[ci]))
{
/* We're going to search up the list comparing element i-1 with
our current score and moving it down the list if it's worse */
if (num_scores < scores_size)
{
i = num_scores;
num_scores++;
}
else
i = num_scores - 1;
/* Shift down all the bits of the array that need shifting */
for (; (i > 0) && (scores[i - 1].weight < lscores[ci]); i--)
scores[i] = scores[i-1];
/* Insert our new score */
scores[i].weight = lscores[ci];
scores[i].di = ci;
#if 1
{
/* Store the appearing words in NAME. */
char buf[BOW_MAX_WORD_LENGTH * query_wv->num_entries];
int j;
assert (wis[ci]);
buf[0] = '\0';
for (j = 0; wis[ci][j] >= 0; j++)
{
strcat (buf, bow_int2word (wis[ci][j]));
strcat (buf, " ");
}
scores[i].name = strdup (buf);
assert (scores[i].name);
}
#else
scores[i].name = NULL;
#endif
}
}
bow_free (lscores);
for (i = 0; i < barrel->cdocs->length; i++)
{
if (wis[i])
bow_free (wis[i]);
}
bow_free (wis);
bow_tfidf_num_hit_documents = num_hit_documents;
/* All done - return the number of elements we have */
return num_scores;
}
bow_params_tfidf bow_tfidf_params_tfidf_words =
{
bow_tfidf_words,
bow_tfidf_straight
};
bow_params_tfidf bow_tfidf_params_tfidf_log_words =
{
bow_tfidf_words,
bow_tfidf_log
};
bow_params_tfidf bow_tfidf_params_tfidf =
{
bow_tfidf_occurrences,
bow_tfidf_log
};
bow_params_tfidf bow_tfidf_params_tfidf_log_occur =
{
bow_tfidf_occurrences,
bow_tfidf_log
};
#define TFIDF_METHOD(PARAM_NAME) \
rainbow_method bow_method_ ## PARAM_NAME = \
{ \
#PARAM_NAME, \
bow_tfidf_set_weights, \
0, /* no weight scaling function */ \
bow_barrel_normalize_weights_by_vector_length, \
bow_barrel_new_vpc_weight_then_merge, \
0, /* no prior-setting function */ \
bow_tfidf_score, \
bow_wv_set_weights_to_count_times_idf, \
bow_wv_normalize_weights_by_vector_length, \
bow_barrel_free, \
&bow_tfidf_params_ ## PARAM_NAME \
}; \
void _register_method_ ## PARAM_NAME () \
__attribute__ ((constructor)); \
void _register_method_ ## PARAM_NAME () \
{ \
bow_method_register_with_name ((bow_method*)& \
bow_method_ ## PARAM_NAME, \
#PARAM_NAME, \
sizeof (rainbow_method), \
NULL); \
}
TFIDF_METHOD(tfidf_words)
TFIDF_METHOD(tfidf_log_words)
TFIDF_METHOD(tfidf_log_occur)
TFIDF_METHOD(tfidf)
|