1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
|
/* Produce a vector-per-class description of the model data in a barrel */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Andrew Kachites McCallum <mccallum@cs.cmu.edu>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
double bow_wi2dvf_sum (bow_wi2dvf *wi2dvf)
{
int wi, max_wi, dvi;
double sum = 0;
bow_dv *dv;
max_wi = MIN (wi2dvf->size, bow_num_words ());
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (wi2dvf, wi);
if (!dv)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
sum += dv->entry[dvi].weight;
}
return sum;
}
/* Given a barrel of documents, create and return another barrel with
only one vector per class. The classes will be represented as
"documents" in this new barrel. */
bow_barrel *
bow_barrel_new_vpc (bow_barrel *doc_barrel)
{
bow_barrel* vpc_barrel; /* The vector per class barrel */
int max_ci = -1; /* The highest index of encountered classes */
int num_classes = bow_barrel_num_classes (doc_barrel);
int wi;
int max_wi;
int dvi;
int ci;
bow_dv *dv;
bow_dv *vpc_dv;
int di;
int num_docs_per_ci[num_classes];
bow_cdoc *cdoc;
double sum = 0;
assert (doc_barrel->classnames);
max_wi = MIN (doc_barrel->wi2dvf->size, bow_num_words ());
/* Create an empty barrel; we fill fill it with vector-per-class
data and return it. */
/* This assertion can fail when DOC_BARREL was read from a disk
archive that was created before CLASS_PROBS was added to BOW_CDOC */
assert (doc_barrel->cdocs->entry_size >= sizeof (bow_cdoc));
vpc_barrel = bow_barrel_new (doc_barrel->wi2dvf->size,
num_classes,
doc_barrel->cdocs->entry_size,
doc_barrel->cdocs->free_func);
vpc_barrel->method = doc_barrel->method;
vpc_barrel->classnames = bow_int4str_new (0);
/* Make sure to set the VPC indicator */
vpc_barrel->is_vpc = 1;
bow_verbosify (bow_verbose, "Making vector-per-class... words :: ");
/* Count the number of documents in each class */
for (ci = 0; ci < num_classes; ci++)
num_docs_per_ci[ci] = 0;
for (di = 0; di < doc_barrel->cdocs->length; di++)
{
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
if (cdoc->type == bow_doc_train)
num_docs_per_ci[cdoc->class]++;
}
/* Update the CDOC->WORD_COUNT in the DOC_BARREL in order to match
the (potentially) pruned vocabulary. */
{
bow_wv *wv = NULL;
int wvi;
bow_dv_heap *heap = bow_test_new_heap (doc_barrel);
while ((di = bow_heap_next_wv (heap, doc_barrel, &wv,
bow_cdoc_yes)) != -1)
{
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
cdoc->word_count = 0;
for (wvi = 0; wvi < wv->num_entries; wvi++)
{
if (bow_wi2dvf_dv (doc_barrel->wi2dvf, wv->entry[wvi].wi))
cdoc->word_count += wv->entry[wvi].count;
}
}
}
/* Initialize the WI2DVF part of the VPC_BARREL. Sum together the
counts and weights for individual documents, grabbing only the
training documents. */
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (doc_barrel->wi2dvf, wi);
if (!dv)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
di = dv->entry[dvi].di;
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
ci = cdoc->class;
assert (ci >= 0);
assert (ci < num_classes);
if (ci > max_ci)
max_ci = ci;
if (cdoc->type == bow_doc_train)
{
float weight;
/* The old version of bow_wi2dvf_add_di_text_fp() initialized
the dv WEIGHT to 0 instead of the word count. If the weight
is zero, then use the count instead. Note, however, that
the TFIDF method might have set the weight, so we don't
want to use the count all the time. */
if (dv->entry[dvi].weight)
weight = dv->entry[dvi].weight;
else
weight = dv->entry[dvi].count;
if (bow_event_model == bow_event_document)
{
assert (dv->entry[dvi].count);
bow_wi2dvf_add_wi_di_count_weight (&(vpc_barrel->wi2dvf),
wi, ci, 1, 1);
}
else if (bow_event_model == bow_event_document_then_word)
{
bow_wi2dvf_add_wi_di_count_weight
(&(vpc_barrel->wi2dvf), wi, ci, dv->entry[dvi].count,
(bow_event_document_then_word_document_length
* weight / cdoc->word_count));
sum += (bow_event_document_then_word_document_length
* weight / cdoc->word_count);
}
else
{
bow_wi2dvf_add_wi_di_count_weight (&(vpc_barrel->wi2dvf),
wi, ci,
dv->entry[dvi].count,
weight);
}
}
}
/* Set the IDF of the class's wi2dvf directly from the doc's wi2dvf */
vpc_dv = bow_wi2dvf_dv (vpc_barrel->wi2dvf, wi);
if (vpc_dv) /* this could be null if all of this word's
occurrences are in non training docs */
vpc_dv->idf = dv->idf;
if (max_wi - wi % 100 == 0)
bow_verbosify (bow_verbose, "\b\b\b\b\b\b%6d", max_wi - wi);
}
#if 0
bow_verbosify (bow_progress, "vpc_sum=%f\n", sum);
bow_verbosify (bow_progress, "wi2dvf_sum=%f\n",
bow_wi2dvf_sum (vpc_barrel->wi2dvf));
#endif
bow_verbosify (bow_verbose, "\b\b\b\b\b\b");
/* xxx OK to have some classes with no words
assert (num_classes-1 == max_ci); */
if (max_ci < 0)
{
int i;
bow_verbosify (bow_progress, "%s: No data found for ",
__PRETTY_FUNCTION__);
for (i = 0; i < num_classes; i++)
bow_verbosify (bow_progress, "%s ",
bow_barrel_classname_at_index (doc_barrel, i));
bow_verbosify (bow_progress, "\n");
}
bow_verbosify (bow_verbose, "\n");
/* Initialize the CDOCS and CLASSNAMES parts of the VPC_BARREL.
Create BOW_CDOC structures for each class, and append them to the
VPC->CDOCS array. */
for (ci = 0; ci < num_classes; ci++)
{
bow_cdoc cdoc;
const char *classname = NULL;
cdoc.type = bow_doc_train;
cdoc.normalizer = -1.0f;
/* Make WORD_COUNT be the number of documents in the class.
This is for the document event model.*/
cdoc.word_count = num_docs_per_ci[ci];
if (doc_barrel->classnames)
{
classname = bow_barrel_classname_at_index (doc_barrel, ci);
cdoc.filename = strdup (classname);
if (!cdoc.filename)
bow_error ("Memory exhausted.");
}
else
{
cdoc.filename = NULL;
}
cdoc.class_probs = NULL;
cdoc.class = ci;
bow_verbosify (bow_verbose, "%20d model documents in class `%s'\n",
num_docs_per_ci[ci], cdoc.filename);
/* Add a CDOC for this class to the VPC_BARREL */
bow_array_append (vpc_barrel->cdocs, &cdoc);
/* Add an entry for this class into the VPC_BARREL->CLASSNAMES map. */
bow_str2int (vpc_barrel->classnames, classname);
}
if (doc_barrel->method->vpc_set_priors)
{
/* Set the prior probabilities on classes, if we're doing
NaiveBayes or something else that needs them. */
(*doc_barrel->method->vpc_set_priors) (vpc_barrel, doc_barrel);
}
else
{
/* We don't need priors, so set them to obviously bogus values,
so we'll notice if they accidently get used. */
for (ci = 0; ci < num_classes; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior = -1;
}
}
return vpc_barrel;
}
/* Like bow_barrel_new_vpc(), but it also sets and normalizes the
weights appropriately by calling SET_WEIGHTS from the METHOD of
DOC_BARREL on the `vector-per-class' barrel that will be returned. */
bow_barrel *
bow_barrel_new_vpc_merge_then_weight (bow_barrel *doc_barrel)
{
bow_barrel *vpc_barrel;
assert (doc_barrel->method->name);
/* Merge documents into classes, then set weights. */
vpc_barrel = bow_barrel_new_vpc (doc_barrel);
bow_barrel_set_weights (vpc_barrel);
/* Scale the weights */
bow_barrel_scale_weights (vpc_barrel, doc_barrel);
/* Normalize the weights. */
bow_barrel_normalize_weights (vpc_barrel);
return vpc_barrel;
}
/* Same as above, but set the weights in the DOC_BARREL, create the
`Vector-Per-Class' barrel, and set the weights in the VPC barrel by
summing weights from the DOC_BARREL. */
bow_barrel *
bow_barrel_new_vpc_weight_then_merge (bow_barrel *doc_barrel)
{
bow_barrel *vpc_barrel;
/* Set weights, then merge documents into classes. */
bow_barrel_set_weights (doc_barrel);
vpc_barrel = bow_barrel_new_vpc (doc_barrel);
bow_barrel_scale_weights (vpc_barrel, doc_barrel);
bow_barrel_normalize_weights (vpc_barrel);
return vpc_barrel;
}
/* Set the class prior probabilities by counting the number of
documents of each class. */
void
bow_barrel_set_vpc_priors_by_counting (bow_barrel *vpc_barrel,
bow_barrel *doc_barrel)
{
double prior_sum = 0;
int ci;
int max_ci = vpc_barrel->cdocs->length - 1;
int di;
/* Zero them. */
for (ci = 0; ci <= max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior = 0;
}
/* Add in document counts. */
for (di = 0; di < doc_barrel->cdocs->length; di++)
{
bow_cdoc *doc_cdoc;
bow_cdoc *vpc_cdoc;
doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
if (doc_cdoc->type != bow_doc_train)
continue;
if (doc_cdoc->class >= vpc_barrel->cdocs->length)
{
/* This can happen if all of the documents in a certain class
contain only words that are not in the vocabulary used
when running bow_barrel_new_vpc() above. */
bow_error ("Number of classes in class barrel do not match\n"
"number of classes in document barrel!");
}
vpc_cdoc = bow_array_entry_at_index (vpc_barrel->cdocs,
doc_cdoc->class);
vpc_cdoc->prior += doc_cdoc->prior;
}
/* Sum them all. */
for (ci = 0; ci <= max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
prior_sum += cdoc->prior;
}
if (prior_sum)
{
/* Normalize to set the prior. */
for (ci = 0; ci <= max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior /= prior_sum;
if (cdoc->prior == 0)
bow_verbosify (bow_progress,
"WARNING: class `%s' has zero prior\n",
cdoc->filename);
/* printf ("ci=%d prior_sum=%f prior=%f\n", ci,prior_sum,
cdoc->prior);*/
/* xxx We allow "cdoc->prior >= 0.0" because there may be no
training data for some class. Is this good? */
assert (cdoc->prior >= 0.0 && cdoc->prior <= 1.0);
}
}
else
{
bow_verbosify (bow_progress, "WARNING: All classes have zero prior\n");
}
}
/* Like bow_barrel_new_vpc, but uses both labeled and unlabeled data.
It uses the class_probs of each doc to determine its class
membership. The counts in the wi2dvf are set to bogus numbers. The
weights of the wi2dvf contain the real information. The normalizer
of each vpc cdoc is set to the fractional number of documents per
class. The word_count of each vpc cdoc is rounded integer for the
number of documents per class. The word_count of each document
cdoc is set to the sum of the counts of its corresponding word
vector. This is to get correct numbers for the doc-then-word event
model. */
bow_barrel *
bow_barrel_new_vpc_using_class_probs (bow_barrel *doc_barrel)
{
bow_barrel* vpc_barrel; /* The vector per class barrel */
int num_classes = bow_barrel_num_classes (doc_barrel);
int wi;
int max_wi;
int dvi;
int ci;
bow_dv *dv;
bow_dv *vpc_dv;
int di;
float num_docs_per_ci[num_classes];
bow_cdoc *cdoc;
assert (doc_barrel->classnames);
max_wi = MIN (doc_barrel->wi2dvf->size, bow_num_words ());
/* Create an empty barrel; we fill it with vector-per-class
data and return it. */
/* This assertion can fail when DOC_BARREL was read from a disk
archive that was created before CLASS_PROBS was added to BOW_CDOC */
assert (doc_barrel->cdocs->entry_size >= sizeof (bow_cdoc));
vpc_barrel = bow_barrel_new (doc_barrel->wi2dvf->size,
num_classes,
doc_barrel->cdocs->entry_size,
doc_barrel->cdocs->free_func);
vpc_barrel->method = doc_barrel->method;
vpc_barrel->classnames = bow_int4str_new (0);
/* Make sure to set the VPC indicator */
vpc_barrel->is_vpc = 1;
bow_verbosify (bow_verbose, "Making vector-per-class... words :: ");
/* Count the number of documents in each class using the class probs */
for (ci = 0; ci < num_classes; ci++)
num_docs_per_ci[ci] = 0.0;
for (di = 0; di < doc_barrel->cdocs->length; di++)
{
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
if (cdoc->type == bow_doc_train ||
cdoc->type == bow_doc_unlabeled) {
for (ci = 0; ci < num_classes; ci++)
num_docs_per_ci[ci] += cdoc->class_probs[ci];
}
}
/* Update the CDOC->WORD_COUNT in the DOC_BARREL in order to match
the (potentially) pruned vocabulary. */
{
bow_wv *wv = NULL;
int wvi;
bow_dv_heap *heap = bow_test_new_heap (doc_barrel);
while ((di = bow_heap_next_wv (heap, doc_barrel, &wv,
bow_cdoc_yes)) != -1)
{
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
cdoc->word_count = 0;
for (wvi = 0; wvi < wv->num_entries; wvi++)
{
if (bow_wi2dvf_dv (doc_barrel->wi2dvf, wv->entry[wvi].wi))
cdoc->word_count += wv->entry[wvi].count;
}
}
}
/* Initialize the WI2DVF part of the VPC_BARREL. Sum together the
counts and weights for individual documents, grabbing only the
training documents. */
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (doc_barrel->wi2dvf, wi);
if (!dv)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
di = dv->entry[dvi].di;
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
if (cdoc->type == bow_doc_train ||
cdoc->type == bow_doc_unlabeled)
{
float weight;
/* The old version of bow_wi2dvf_add_di_text_fp() initialized
the dv WEIGHT to 0 instead of the word count. If the weight
is zero, then use the count instead. Note, however, that
the TFIDF method might have set the weight, so we don't
want to use the count all the time. */
if (dv->entry[dvi].weight)
weight = dv->entry[dvi].weight;
else
weight = dv->entry[dvi].count;
for (ci = 0; ci < num_classes; ci++)
{
/* do the right thing based on the event model */
if (bow_event_model == bow_event_document)
{
assert (dv->entry[dvi].count);
bow_wi2dvf_add_wi_di_count_weight (&(vpc_barrel->wi2dvf),
wi, ci, 1,
cdoc->class_probs[ci]);
}
else if (bow_event_model == bow_event_document_then_word)
{
bow_wi2dvf_add_wi_di_count_weight
(&(vpc_barrel->wi2dvf), wi, ci, 1,
(bow_event_document_then_word_document_length
* weight * cdoc->class_probs[ci] / cdoc->word_count));
}
else
{
bow_wi2dvf_add_wi_di_count_weight (&(vpc_barrel->wi2dvf),
wi, ci,
1,
weight * cdoc->class_probs[ci]);
}
}
}
}
/* Set the IDF of the class's wi2dvf directly from the doc's wi2dvf */
vpc_dv = bow_wi2dvf_dv (vpc_barrel->wi2dvf, wi);
if (vpc_dv)
vpc_dv->idf = dv->idf;
if (max_wi - wi % 100 == 0)
bow_verbosify (bow_verbose, "\b\b\b\b\b\b%6d", max_wi - wi);
}
bow_verbosify (bow_verbose, "\b\b\b\b\b\b\n");
/* Initialize the CDOCS and CLASSNAMES parts of the VPC_BARREL.
Create BOW_CDOC structures for each class, and append them to the
VPC->CDOCS array. */
for (ci = 0; ci < num_classes; ci++)
{
bow_cdoc cdoc;
const char *classname = NULL;
cdoc.type = bow_doc_train;
cdoc.normalizer = num_docs_per_ci[ci];
/* Make WORD_COUNT be the number of documents in the class.
This is for the document event model.*/
cdoc.word_count = rint (num_docs_per_ci[ci]);
if (doc_barrel->classnames)
{
classname = bow_barrel_classname_at_index (doc_barrel, ci);
cdoc.filename = strdup (classname);
if (!cdoc.filename)
bow_error ("Memory exhausted.");
}
else
{
cdoc.filename = NULL;
}
cdoc.class_probs = NULL;
cdoc.class = ci;
bow_verbosify (bow_verbose, "%20f model documents in class `%s'\n",
num_docs_per_ci[ci], cdoc.filename);
/* Add a CDOC for this class to the VPC_BARREL */
bow_array_append (vpc_barrel->cdocs, &cdoc);
/* Add an entry for this class into the VPC_BARREL->CLASSNAMES map. */
bow_str2int (vpc_barrel->classnames, classname);
}
if (doc_barrel->method->vpc_set_priors)
{
/* Set the prior probabilities on classes, if we're doing
NaiveBayes or something else that needs them. */
(*doc_barrel->method->vpc_set_priors) (vpc_barrel, doc_barrel);
}
else
{
/* We don't need priors, so set them to obviously bogus values,
so we'll notice if they accidently get used. */
for (ci = 0; ci < num_classes; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior = -1;
}
}
return vpc_barrel;
}
/* Set the class prior probabilities by doing a weighted (by class
membership) count of the number of labeled and unlabeled documents
in each class. This uses class_probs to determine class
memberships of the documents. */
void
bow_barrel_set_vpc_priors_using_class_probs (bow_barrel *vpc_barrel,
bow_barrel *doc_barrel)
{
float prior_sum = 0;
int ci;
int max_ci = vpc_barrel->cdocs->length;
int di;
/* Zero them. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior = 0;
}
/* Count each document for each class according to the
class_probs. */
for (di = 0; di < doc_barrel->cdocs->length; di++)
{
bow_cdoc *doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
bow_cdoc *vpc_cdoc;
if (doc_cdoc->type == bow_doc_train ||
doc_cdoc->type == bow_doc_unlabeled)
{
for (ci = 0; ci < max_ci; ci++)
{
vpc_cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
vpc_cdoc->prior += doc_cdoc->class_probs[ci];
}
}
}
/* Sum them all. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
prior_sum += cdoc->prior;
}
/* Normalize to set the prior. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior /= prior_sum;
if (cdoc->prior == 0)
bow_verbosify (bow_progress,
"WARNING: class `%s' has zero prior\n",
cdoc->filename);
assert (cdoc->prior >= 0.0 && cdoc->prior <= 1.0);
}
}
|