1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027
|
/* Weight-setting and scoring implementation for active learning */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Kamal Nigam <knigam@cs.cmu.edu>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#include <math.h>
#include <argp/argp.h>
#include <stdlib.h>
#include <bow/em.h>
typedef enum
{
dkl,
length,
qbc,
randomly,
relevance,
skl,
sve,
uncertainty,
ve,
wkl
} active_selection_type;
typedef struct _active_scores {
int di; /* the doc barrel index of the doc */
double weight; /* weight used for selecting */
bow_score **scores; /* the scores of the doc */
} active_scores;
void active_select_length (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size);
void active_select_uncertain (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size);
void active_select_relevant (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size);
void active_select_random (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size);
void active_select_qbc (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size);
void active_select_weighted_kl (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size);
void active_select_dkl (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size);
void active_select_vote_entropy (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size);
void active_select_stream_ve (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size);
void active_select_stream_kl (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size);
void active_test (FILE *test_fp, bow_barrel *rainbow_doc_barrel,
bow_barrel *rainbow_class_barrel);
/* The variables that can be changed on the command line, with defaults: */
static int active_add_per_round = 4;
static int active_test_stats = 0;
static int active_committee_size = 1;
static active_selection_type active_selection_method = uncertainty;
static int active_num_rounds = 10;
static void (* active_select_docs)(bow_barrel *, active_scores *, int, int, int) =
active_select_uncertain;
static int active_binary_pos_ci = -1;
static char* active_binary_pos_classname = NULL;
static char* active_secondary_method = "naivebayes";
static int active_final_em = 0;
static int active_print_committee_matrices = 0;
static int active_qbc_low_kl = 0;
static int active_pr_print_stat_summary = 0;
static int active_pr_window_size = 20;
static int active_remap_scores_pr = 0;
static int active_no_final_em = 0;
static double active_alpha = 0.5;
static double active_beta = 5;
static double active_stream_epsilon = 0.3;
static int active_perturb_after_em = 0;
/* The integer or single char used to represent this command-line option.
Make sure it is unique across all libbow and rainbow. */
enum {
ACTIVE_ADD_PER_ROUND = 4000,
ACTIVE_TEST_STATS,
ACTIVE_SELECTION_METHOD,
ACTIVE_NUM_ROUNDS,
ACTIVE_BINARY_POS,
ACTIVE_SECONDARY_METHOD,
ACTIVE_COMMITTEE_SIZE,
ACTIVE_FINAL_EM,
ACTIVE_PRINT_COMMITTEE_MATRICES,
ACTIVE_QBC_LOW_KL,
ACTIVE_PR_PRINT_STAT_SUMMARY,
ACTIVE_PR_WINDOW_SIZE,
ACTIVE_REMAP_SCORES_PR,
ACTIVE_NO_FINAL_EM,
ACTIVE_BETA,
ACTIVE_STREAM_EPSILON,
ACTIVE_PERTURB_AFTER_EM,
};
static struct argp_option active_options[] =
{
{0,0,0,0,
"Active Learning options:", 70},
{"active-add-per-round", ACTIVE_ADD_PER_ROUND, "NUM", 0,
"Specify the number of documents to label each round. The default is 4."},
{"active-test-stats", ACTIVE_TEST_STATS, 0, 0,
"Generate output for test docs every n rounds."},
{"active-selection-method", ACTIVE_SELECTION_METHOD, "METHOD", 0,
"Specify the selection method for picking unlabeled docs. "
"One of uncertainty, relevance, qbc, random. "
"The default is 'uncertainty'."},
{"active-num-rounds", ACTIVE_NUM_ROUNDS, "NUM", 0,
"The number of active learning rounds to perform. The default is 10."},
{"active-binary-pos", ACTIVE_BINARY_POS, "CLASS", 0,
"The name of the positive class for binary classification. Required for"
"relevance sampling."},
{"active-secondary-method", ACTIVE_SECONDARY_METHOD, "METHOD", 0,
"The underlying method for active learning to use. The default is 'naivebayes'."},
{"active-committee-size", ACTIVE_COMMITTEE_SIZE, "NUM", 0,
"The number of committee members to use with QBC. Default is 1."},
{"active-final-em", ACTIVE_FINAL_EM, 0, 0,
"Finish with a full round of EM."},
{"active-print-committee-matrices", ACTIVE_PRINT_COMMITTEE_MATRICES, 0, 0,
"Print the confusion matrix for each committee member at each round."},
{"active-qbc-low-kl", ACTIVE_QBC_LOW_KL, 0, 0,
"Select documents with the lowest kl-divergence instead of the highest."},
{"active-pr-print-stat-summary", ACTIVE_PR_PRINT_STAT_SUMMARY, 0, 0,
"Print the precision recall curves used for score to probability remapping."},
{"active-pr-window-size", ACTIVE_PR_WINDOW_SIZE, "NUM", 0,
"Set the window size for precision-recall score to probability remapping."
"The default is 20."},
{"active-remap-scores-pr", ACTIVE_REMAP_SCORES_PR, 0, 0,
"Remap scores with sneaky precision-recall tricks."},
{"active-no-final-em", ACTIVE_NO_FINAL_EM, 0, 0,
"Finish without a full round of EM."},
{"active-beta", ACTIVE_BETA, "NUM", 0,
"Increase spread of document densities."},
{"active-stream-epsilon", ACTIVE_STREAM_EPSILON, "NUM", 0,
"The rate factor for selecting documents in stream sampling."},
{"active-perturb-after-em", ACTIVE_PERTURB_AFTER_EM, 0, 0,
"Perturb after running EM to create committee members."},
{0, 0}
};
error_t
active_parse_opt (int key, char *arg, struct argp_state *state)
{
switch (key)
{
case ACTIVE_ADD_PER_ROUND:
active_add_per_round = atoi(arg);
break;
case ACTIVE_TEST_STATS:
active_test_stats = 1;
break;
case ACTIVE_SELECTION_METHOD:
if (!strcmp(arg, "uncertainty"))
{
active_selection_method = uncertainty;
active_select_docs = active_select_uncertain;
}
else if (!strcmp(arg, "length"))
{
active_selection_method = length;
active_select_docs = active_select_length;
}
else if (!strcmp(arg, "relevance"))
{
active_selection_method = relevance;
active_select_docs = active_select_relevant;
}
else if (!strcmp(arg, "random"))
{
active_selection_method = randomly;
active_select_docs = active_select_random;
}
else if (!strcmp(arg, "qbc"))
{
active_selection_method = qbc;
active_select_docs = active_select_qbc;
}
else if (!strcmp(arg, "ve"))
{
active_selection_method = ve;
active_select_docs = active_select_vote_entropy;
}
else if (!strcmp(arg, "wkl"))
{
active_selection_method = wkl;
active_select_docs = active_select_weighted_kl;
}
else if (!strcmp(arg, "dkl"))
{
active_selection_method = dkl;
active_select_docs = active_select_dkl;
}
else if (!strcmp(arg, "sve"))
{
active_selection_method = sve;
active_select_docs = active_select_stream_ve;
}
else if (!strcmp(arg, "skl"))
{
active_selection_method = skl;
active_select_docs = active_select_stream_kl;
}
else
bow_error("Invalid argument for --active-selection-method");
break;
case ACTIVE_NUM_ROUNDS:
active_num_rounds = atoi(arg);
break;
case ACTIVE_BINARY_POS:
active_binary_pos_classname = arg;
break;
case ACTIVE_SECONDARY_METHOD:
active_secondary_method = arg;
break;
case ACTIVE_COMMITTEE_SIZE:
active_committee_size = atoi (arg);
break;
case ACTIVE_FINAL_EM:
active_final_em = 1;
break;
case ACTIVE_PRINT_COMMITTEE_MATRICES:
active_print_committee_matrices = 1;
break;
case ACTIVE_QBC_LOW_KL:
active_qbc_low_kl = 1;
break;
case ACTIVE_REMAP_SCORES_PR:
active_remap_scores_pr = 1;
break;
case ACTIVE_PR_WINDOW_SIZE:
active_pr_window_size = atoi (arg);
break;
case ACTIVE_PR_PRINT_STAT_SUMMARY:
active_pr_print_stat_summary = 1;
break;
case ACTIVE_NO_FINAL_EM:
active_no_final_em = 1;
break;
case ACTIVE_BETA:
active_beta = atof (arg);
break;
case ACTIVE_STREAM_EPSILON:
active_stream_epsilon = atof (arg);
break;
case ACTIVE_PERTURB_AFTER_EM:
active_perturb_after_em = 1;
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static const struct argp active_argp =
{
active_options,
active_parse_opt
};
static struct argp_child active_argp_child =
{
&active_argp, /* This child's argp structure */
0, /* flags for child */
0, /* optional header in help message */
0 /* arbitrary group number for ordering */
};
/* End of command-line options specific to EM */
/* Given a fully-specified file path name (all the way from `/'),
return just the last filename part of it. */
static inline const char *
filename_to_classname (const char *filename)
{
const char *ret;
ret = strrchr (filename, '/');
if (ret)
return ret + 1;
return filename;
}
/* cheat and look at the unlabeled data and convert the scores into
true probabilities based on a window size. BUG: we're not resorting
the weights as we should be. */
void
active_remap_scores (bow_barrel *doc_barrel, active_scores *scores,
int total_unknown, int committee_size)
{
int num_classes = bow_barrel_num_classes(doc_barrel);
bow_em_pr_struct *pr_by_class[num_classes];
int member;
int ci;
int scorei;
int hi;
/* malloc some space for pr stats */
for (ci = 0; ci < num_classes; ci++)
pr_by_class[ci] = bow_malloc(sizeof(bow_em_pr_struct) * total_unknown);
for (member = 0; member < committee_size; member++)
{
/* arrange this members scores by class, and note correctness */
for (scorei = 0; scorei < total_unknown; scorei++)
{
bow_cdoc *cdoc = bow_array_entry_at_index (doc_barrel->cdocs,
scores[scorei].di);
for (hi = 0; hi < num_classes; hi++)
{
pr_by_class[scores[scorei].scores[member][hi].di][scorei].score =
scores[scorei].scores[member][hi].weight;
pr_by_class[scores[scorei].scores[member][hi].di][scorei].correct =
(cdoc->class == scores[scorei].scores[member][hi].di
? 1 : 0);
}
}
/* sort the scores for each class by descending score */
for (ci = 0; ci < num_classes; ci ++)
qsort(pr_by_class[ci], total_unknown, sizeof (bow_em_pr_struct),
bow_em_pr_struct_compare);
/* print out a summary of the stats */
if (active_pr_print_stat_summary)
{
for (ci = 0; ci < num_classes; ci++)
{
int pr_index;
int correct=0;
int count=0;
bow_verbosify(bow_progress, "%25s",
filename_to_classname
(bow_barrel_classname_at_index (doc_barrel, ci)));
for (pr_index = 0; pr_index < total_unknown; pr_index++)
{
if (pr_index % active_pr_window_size == 0)
{
if (pr_index != 0)
{
while (pr_index < total_unknown &&
pr_by_class[ci][pr_index-1].score ==
pr_by_class[ci][pr_index].score)
{
correct += pr_by_class[ci][pr_index].correct;
count++;
pr_index++;
}
bow_verbosify(bow_progress, " %3.0f (%1.3f)",
(float) correct * 100.0 / count,
pr_by_class[ci][pr_index].score);
if (!(pr_index < total_unknown))
break;
}
correct = 0;
count = 0;
}
correct += pr_by_class[ci][pr_index].correct;
count++;
if (pr_by_class[ci][pr_index].correct != 0 &&
pr_by_class[ci][pr_index].correct != 1)
bow_error("Big Problem");
}
bow_verbosify(bow_progress, "\n");
}
}
/* remap the scores to better probabilities */
for (scorei = 0; scorei < total_unknown; scorei++)
{
double prob_by_ci[100];
double total = 0.0;
assert(num_classes < 100);
/* set the class_probs by picking numbers from the pr
charts */
for (hi = 0; hi < num_classes; hi++)
{
double score = scores[scorei].scores[member][hi].weight;
int class = scores[scorei].scores[member][hi].di;
int pr_index_low;
int pr_index_high;
int pr_index = 0;
int correct_count = 0;
int num_docs_in_window = 0;
int pri;
while ((pr_index < total_unknown) &&
(pr_by_class[class][pr_index].score > score))
pr_index++;
pr_index_low = pr_index;
while ((pr_index < total_unknown) &&
pr_by_class[class][pr_index].score == score)
pr_index++;
pr_index_high = pr_index;
#if 0
if (10 > pr_index)
correct_count += 10 - pr_index;
#endif
/* note that we're including the test document here
in the stats... */
for (pri = MAX (0, MIN(pr_index_low,
((pr_index_low + pr_index_high -
active_pr_window_size) / 2)));
pri < MIN (MAX(pr_index_high,
((pr_index_high + pr_index_low +
active_pr_window_size) / 2)),
total_unknown);
pri++)
{
correct_count += pr_by_class[class][pri].correct;
num_docs_in_window++;
}
prob_by_ci[class] = (double) correct_count /
((double) num_docs_in_window);
}
/* normalize the probs to sum to one */
for (ci = 0; ci < num_classes; ci++)
total += prob_by_ci[ci];
for (hi = 0; hi < num_classes; hi++)
scores[scorei].scores[member][hi].weight =
prob_by_ci[scores[scorei].scores[member][hi].di] / total;
}
}
}
/* Return the entropy of the words in the document WV. */
float
active_document_entropy (bow_wv *wv)
{
float ret = 0;
float wv_word_count = 0;
int wvi;
float pr_w;
for (wvi = 0; wvi < wv->num_entries; wvi++)
wv_word_count += wv->entry[wvi].count;
for (wvi = 0; wvi < wv->num_entries; wvi++)
{
pr_w = wv->entry[wvi].count / wv_word_count;
ret -= pr_w * log (pr_w);
}
return ret;
}
/* select method routines */
/* comparison function for sorting on selection criteria */
int
active_scores_compare (const void *x, const void *y)
{
if (((active_scores *)x)->weight > ((active_scores *)y)->weight)
return -1;
else if (((active_scores *)x)->weight == ((active_scores *)y)->weight)
return 0;
else
return 1;
}
/* select docs with the highest kl-divergence to the mean */
void
active_select_qbc (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown,
int committee_size)
{
int num_classes = bow_barrel_num_classes (doc_barrel);
double *mean_class_dist;
double mean_class_sum;
int committee;
int class;
int k;
mean_class_dist = alloca (sizeof (double) * num_classes);
/* Calculate the entropy of the class labels, H(Class|d,Committee),
where Class and Committee are random varibles, and put this in
SCORES->WEIGHT. */
for (k = 0; k < total_unknown; k++)
{
scores[k].weight = 0;
/* Initialize the mean class distribution for this document. */
for (class = 0; class < num_classes; class++)
mean_class_dist[class] = 0;
for (committee = 0; committee < committee_size; committee++)
for (class = 0; class < num_classes; class++)
mean_class_dist[scores[k].scores[committee][class].di]
+= scores[k].scores[committee][class].weight;
mean_class_sum = 0;
for (class = 0; class < num_classes; class++)
mean_class_sum += mean_class_dist[class];
assert (mean_class_sum > committee_size * 0.999);
assert (mean_class_sum < committee_size * 1.001);
for (class = 0; class < num_classes; class++)
mean_class_dist[class] /= mean_class_sum;
/* Set WEIGHT to KL-divergence-to-the-mean averaged over all
committee members. */
for (committee = 0; committee < committee_size; committee++)
{
for (class = 0; class < bow_barrel_num_classes (doc_barrel); class++)
{
if (1e-100 < scores[k].scores[committee][class].weight)
{
scores[k].weight -=
((1.0 / committee_size)
* scores[k].scores[committee][class].weight
* log (mean_class_dist[scores[k].scores[committee][class].di]
/ scores[k].scores[committee][class].weight));
if (scores[k].weight < -0.1)
bow_error("scores[k].weight < -0.1: %.20f, %.20f", scores[k].weight,
log (mean_class_dist[scores[k].scores[committee][class].di]
/ scores[k].scores[committee][class].weight));
}
}
}
/* KL divergence must be greater than or equal to 0 */
if (scores[k].weight < -0.1)
bow_error("scores[k].weight < -0.1: %.20f", scores[k].weight);
}
/* reverse all weights if want lowest ones */
if (active_qbc_low_kl)
{
for (k = 0; k < total_unknown ; k++)
{
scores[k].weight = -1 * scores[k].weight;
}
}
/* Sort based on weight */
qsort (scores, total_unknown, sizeof (active_scores),
active_scores_compare);
/* Change doc types of those with highest entropy*/
for (k = 0; k < num_to_add; k++)
{
bow_cdoc *doc;
doc = bow_cdocs_di2doc (doc_barrel->cdocs, scores[k].di);
assert (doc);
assert (doc->type == bow_doc_unlabeled);
bow_verbosify (bow_progress, "Labeling %s, weight %f", doc->filename,
scores[k].weight);
for (committee=0; committee < committee_size; committee++)
bow_verbosify(bow_progress, " [(%d, %f) (%d, %f)]",
scores[k].scores[committee][0].di,
scores[k].scores[committee][0].weight,
scores[k].scores[committee][1].di,
scores[k].scores[committee][1].weight);
bow_verbosify(bow_progress, "\n");
doc->type = bow_doc_train;
}
return;
}
/* select docs with the highest weighted kl-divergence to the mean */
void
active_select_weighted_kl (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown,
int committee_size)
{
int num_classes = bow_barrel_num_classes (doc_barrel);
double mean_class_dist[num_classes];
double mean_class_sum;
double **nb_scores;
int committee;
int class;
int k;
bow_cdoc *cdoc;
double nb_scores_sum;
double nb_scores_max;
int si; /* an index into the sorted list of scores */
assert (num_to_add < total_unknown);
assert (em_cross_entropy == 1);
/* Allocate space to store Naive Bayes scores. */
nb_scores = alloca (sizeof (double*) * committee_size);
for (committee = 0; committee < committee_size; committee++)
nb_scores[committee] = alloca (sizeof(double) * num_classes);
/* Calculate the weighted KL divergence of the class labels
and put this in SCORES->WEIGHT. */
for (k = 0; k < total_unknown; k++)
{
/* Fill in the Naive Bayes scores array for this K'th document. */
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, scores[k].di);
for (committee = 0; committee < committee_size; committee++)
{
/* Undo the document length normalization */
for (si = 0; si < num_classes; si++)
nb_scores[committee][scores[k].scores[committee][si].di] =
(scores[k].scores[committee][si].weight
* (cdoc->word_count + 1));
/* Rescale the scores */
nb_scores_max = -DBL_MAX;
for (class = 0; class < num_classes; class++)
if (nb_scores_max < nb_scores[committee][class])
nb_scores_max = nb_scores[committee][class];
for (class = 0; class < num_classes; class++)
nb_scores[committee][class] -= nb_scores_max;
/* Take the exponent of the scores to make them probabilities. */
for (class = 0; class < num_classes; class++)
nb_scores[committee][class] = exp (nb_scores[committee][class]);
/* Normalize them so they sum to one. */
nb_scores_sum = 0;
for (class = 0; class < num_classes; class++)
nb_scores_sum += nb_scores[committee][class];
assert (nb_scores_sum > 0);
for (class = 0; class < num_classes; class++)
nb_scores[committee][class] /= nb_scores_sum;
}
/* Initialize the mean class distribution for this document. */
for (class = 0; class < num_classes; class++)
mean_class_dist[class] = 0;
for (committee = 0; committee < committee_size; committee++)
for (class = 0; class < num_classes; class++)
mean_class_dist[class] += nb_scores[committee][class];
mean_class_sum = 0;
for (class = 0; class < num_classes; class++)
mean_class_sum += mean_class_dist[class];
assert (mean_class_sum > committee_size * 0.999);
assert (mean_class_sum < committee_size * 1.001);
for (class = 0; class < num_classes; class++)
mean_class_dist[class] /= mean_class_sum;
/* Set WEIGHT to KL-divergence-to-the-mean averaged over all
committee members. */
scores[k].weight = 0;
for (committee = 0; committee < committee_size; committee++)
{
for (si = 0; si < bow_barrel_num_classes (doc_barrel); si++)
{
class = scores[k].scores[committee][si].di;
if (1e-100 < nb_scores[committee][class])
{
/* xxx Change this back to regular old WKL! */
#define UNSUPERVISED_DENSITY 1
#if UNSUPERVISED_DENSITY
scores[k].weight -=
((1.0 / committee_size)
/* scale by kl-div of this document to this class */
* nb_scores[committee][class]
* log (mean_class_dist[class]
/ nb_scores[committee][class]));
#elif 1
/* Used for ICML submission */
scores[k].weight -=
((1.0 / committee_size)
/* scale by kl-div of this document to this class */
* exp (scores[k].scores[committee][si].weight
+ cdoc->normalizer)
* nb_scores[committee][class]
* log (mean_class_dist[class]
/ nb_scores[committee][class]));
#else
scores[k].weight -=
((1.0 / committee_size)
* (cdoc->word_count + 1)
/* scale by perplexity of this document in this class */
* exp (scores[k].scores[committee][si].weight)
* nb_scores[committee][class]
* log (mean_class_dist[class]
/ nb_scores[committee][class]));
#endif
}
}
}
#if UNSUPERVISED_DENSITY
/* Scale the score by the document density. */
scores[k].weight *= cdoc->prior;
#endif
/* KL divergence must be greater than or equal to 0 */
if (scores[k].weight < -0.1)
bow_error("scores[k].weight < -0.1: %.20f", scores[k].weight);
}
/* Sort based on weight */
qsort (scores, total_unknown, sizeof (active_scores),
active_scores_compare);
/* Change doc types of those with highest entropy*/
for (k = 0; k < num_to_add ; k++)
{
bow_cdoc *doc;
doc = bow_cdocs_di2doc (doc_barrel->cdocs, scores[k].di);
assert (doc);
assert (doc->type == bow_doc_unlabeled);
bow_verbosify (bow_progress, "Labeling %s, weight %f", doc->filename,
scores[k].weight);
for (committee=0; committee < committee_size; committee++)
bow_verbosify(bow_progress, " [(%d, %f) (%d, %f)]",
scores[k].scores[committee][0].di,
scores[k].scores[committee][0].weight,
scores[k].scores[committee][1].di,
scores[k].scores[committee][1].weight);
bow_verbosify(bow_progress, "\n");
doc->type = bow_doc_train;
}
return;
}
/* select docs with the highest weighted kl-divergence to the mean.
Needs crossentropy scores! */
void
active_select_dkl (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown,
int committee_size)
{
int num_classes = bow_barrel_num_classes (doc_barrel);
double mean_class_dist[num_classes];
double mean_class_sum;
double **nb_scores;
int committee;
int class;
int k;
bow_cdoc *cdoc;
double nb_scores_sum;
double nb_scores_max;
int si; /* an index into the sorted list of scores */
assert (num_to_add < total_unknown);
assert (em_cross_entropy == 1);
/* Allocate space to store Naive Bayes scores. */
nb_scores = alloca (sizeof (double*) * committee_size);
for (committee = 0; committee < committee_size; committee++)
nb_scores[committee] = alloca (sizeof(double) * num_classes);
/* Calculate the weighted KL divergence of the class labels
and put this in SCORES->WEIGHT. */
for (k = 0; k < total_unknown; k++)
{
/* Fill in the Naive Bayes scores array for this K'th document. */
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, scores[k].di);
for (committee = 0; committee < committee_size; committee++)
{
/* Undo the document length normalization */
for (si = 0; si < num_classes; si++)
nb_scores[committee][scores[k].scores[committee][si].di] =
(scores[k].scores[committee][si].weight
* (cdoc->word_count + 1));
/* Rescale the scores */
nb_scores_max = -DBL_MAX;
for (class = 0; class < num_classes; class++)
if (nb_scores_max < nb_scores[committee][class])
nb_scores_max = nb_scores[committee][class];
for (class = 0; class < num_classes; class++)
nb_scores[committee][class] -= nb_scores_max;
/* Take the exponent of the scores to make them probabilities. */
for (class = 0; class < num_classes; class++)
nb_scores[committee][class] = exp (nb_scores[committee][class]);
/* Normalize them so they sum to one. */
nb_scores_sum = 0;
for (class = 0; class < num_classes; class++)
nb_scores_sum += nb_scores[committee][class];
assert (nb_scores_sum > 0);
for (class = 0; class < num_classes; class++)
nb_scores[committee][class] /= nb_scores_sum;
}
/* Initialize the mean class distribution for this document. */
for (class = 0; class < num_classes; class++)
mean_class_dist[class] = 0;
for (committee = 0; committee < committee_size; committee++)
for (class = 0; class < num_classes; class++)
mean_class_dist[class] += nb_scores[committee][class];
mean_class_sum = 0;
for (class = 0; class < num_classes; class++)
mean_class_sum += mean_class_dist[class];
assert (mean_class_sum > committee_size * 0.999);
assert (mean_class_sum < committee_size * 1.001);
for (class = 0; class < num_classes; class++)
mean_class_dist[class] /= mean_class_sum;
/* Set WEIGHT to KL-divergence-to-the-mean averaged over all
committee members. */
scores[k].weight = 0;
for (committee = 0; committee < committee_size; committee++)
{
for (si = 0; si < bow_barrel_num_classes (doc_barrel); si++)
{
class = scores[k].scores[committee][si].di;
if (1e-100 < nb_scores[committee][class])
{
scores[k].weight -=
((1.0 / committee_size)
/* scale by kl-div of this document to this class */
* nb_scores[committee][class]
* log (mean_class_dist[class]
/ nb_scores[committee][class]));
}
}
}
/* Scale the score by the document density. */
scores[k].weight *= cdoc->prior;
/* KL divergence must be greater than or equal to 0 */
if (scores[k].weight < -0.1)
bow_error("scores[k].weight < -0.1: %.20f", scores[k].weight);
}
/* Sort based on weight */
qsort (scores, total_unknown, sizeof (active_scores),
active_scores_compare);
/* Change doc types of those with highest entropy*/
for (k = 0; k < num_to_add ; k++)
{
bow_cdoc *doc;
doc = bow_cdocs_di2doc (doc_barrel->cdocs, scores[k].di);
assert (doc);
assert (doc->type == bow_doc_unlabeled);
bow_verbosify (bow_progress, "Labeling %s, weight %f", doc->filename,
scores[k].weight);
for (committee=0; committee < committee_size; committee++)
bow_verbosify(bow_progress, " [(%d, %f) (%d, %f)]",
scores[k].scores[committee][0].di,
scores[k].scores[committee][0].weight,
scores[k].scores[committee][1].di,
scores[k].scores[committee][1].weight);
bow_verbosify(bow_progress, "\n");
doc->type = bow_doc_train;
}
return;
}
/* select docs with the highest vote entropy (Dagan and Engelson) */
void
active_select_vote_entropy (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size)
{
int num_classes = bow_barrel_num_classes (doc_barrel);
double *mean_class_dist;
double mean_class_sum;
int committee;
int class;
int k;
int si;
mean_class_dist = alloca (sizeof (double) * num_classes);
/* Calculate the entropy of the class labels, H(Class|d,Committee),
where Class and Committee are random varibles, and put this in
SCORES->WEIGHT. */
for (k = 0; k < total_unknown; k++)
{
scores[k].weight = 0;
/* Initialize the scores to be 'votes' */
for (committee = 0; committee < committee_size; committee++)
{
scores[k].scores[committee][0].weight = 1.0;
for (si = 1; si < num_classes; si++)
scores[k].scores[committee][si].weight = 0.0;
}
/* Initialize the mean class distribution for this document. */
for (class = 0; class < num_classes; class++)
mean_class_dist[class] = 0;
for (committee = 0; committee < committee_size; committee++)
for (class = 0; class < num_classes; class++)
mean_class_dist[scores[k].scores[committee][class].di]
+= scores[k].scores[committee][class].weight;
mean_class_sum = 0;
for (class = 0; class < num_classes; class++)
mean_class_sum += mean_class_dist[class];
assert (mean_class_sum > committee_size * 0.999);
assert (mean_class_sum < committee_size * 1.001);
for (class = 0; class < num_classes; class++)
mean_class_dist[class] /= mean_class_sum;
/* Calculate the entropy of the mean class distribution */
for (class = 0; class < bow_barrel_num_classes (doc_barrel); class++)
{
if (1e-100 < mean_class_dist[class])
{
scores[k].weight -=
(mean_class_dist[class]
* log (mean_class_dist[class]));
}
}
/* Entropy must be greater than or equal to 0 */
if (scores[k].weight < -0.1)
bow_error("scores[k].weight < -0.1: %.20f", scores[k].weight);
}
/* Sort based on weight */
qsort (scores, total_unknown, sizeof (active_scores),
active_scores_compare);
/* Change doc types of those with highest entropy*/
for (k = 0; k < num_to_add; )
{
int z;
double top_score;
int n;
int j;
/* find how many top ranked docs have same score */
top_score = scores[k].weight;
for (z=k; z < total_unknown && scores[z].weight == top_score ; z++);
/* add all with top score if won't max it out */
if (z < num_to_add)
{
for (n=k; n<z; n++, k++)
{
bow_cdoc *doc;
doc = bow_cdocs_di2doc (doc_barrel->cdocs, scores[k].di);
assert (doc);
assert (doc->type == bow_doc_unlabeled);
bow_verbosify (bow_progress, "Labeling %s, weight %f", doc->filename,
scores[n].weight);
for (committee=0; committee < committee_size; committee++)
bow_verbosify(bow_progress, " %d",
scores[n].scores[committee][0].di);
bow_verbosify(bow_progress, "\n");
doc->type = bow_doc_train;
}
}
else
{
/* need to randomly select some of the docs for labeling */
for (j=0, n=k; n < num_to_add; j++)
{
int si = (rand() % (z-k)) + k;
int doci;
bow_cdoc *doc;
doci = scores[si].di;
doc = bow_cdocs_di2doc (doc_barrel->cdocs, doci);
assert (doc);
if (doc->type == bow_doc_unlabeled)
{
doc->type = bow_doc_train;
bow_verbosify (bow_progress, "Labeling %s, weight %f", doc->filename,
scores[si].weight);
for (committee=0; committee < committee_size; committee++)
bow_verbosify(bow_progress, " %d",
scores[si].scores[committee][0].di);
bow_verbosify(bow_progress, "\n");
n++;
}
if (j > doc_barrel->cdocs->length * 1000)
bow_error ("Random number generator could not find enough "
"unlabeled documents to convert.");
}
return;
}
}
return;
}
void
active_select_uncertain (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown,
int committee_size)
{
int k;
assert(num_to_add <= total_unknown);
assert(committee_size == 1);
/* Make smallest top classification better */
for (k=0; k < total_unknown; k++)
{
scores[k].weight = -1 * scores[k].scores[0][0].weight;
}
/* sort based on weight */
qsort(scores, total_unknown, sizeof (active_scores),
active_scores_compare);
/* change doc types */
for (k=0; k < num_to_add; k++)
{
bow_cdoc *doc;
doc = bow_cdocs_di2doc (doc_barrel->cdocs, scores[k].di);
assert(doc);
assert(doc->type == bow_doc_unlabeled);
bow_verbosify(bow_progress, "Labeling %s\n", doc->filename);
doc->type = bow_doc_train;
}
return;
}
void
active_select_relevant (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown,
int committee_size)
{
int k;
assert(num_to_add <= total_unknown);
assert(committee_size == 1);
for (k=0; k < total_unknown; k++)
{
scores[k].weight = -1 *scores[k].scores[0][0].weight;
}
/* sort based on weight */
qsort(scores, total_unknown, sizeof (active_scores),
active_scores_compare);
/* change doc types */
for (k = total_unknown - num_to_add; k < total_unknown; k++)
{
bow_cdoc *doc = bow_cdocs_di2doc (doc_barrel->cdocs, scores[k].di);
assert(doc);
assert(doc->type == bow_doc_unlabeled);
bow_verbosify(bow_progress, "Labeling %s\n", doc->filename);
doc->type = bow_doc_train;
}
return;
}
void active_select_length(bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown, int committee_size)
{
int k;
assert(num_to_add <= total_unknown);
/* set weight to the document length */
for (k=0; k < total_unknown; k++)
{
bow_cdoc *cdoc = bow_cdocs_di2doc (doc_barrel->cdocs, scores[k].di);
scores[k].weight = cdoc->word_count;
}
/* sort based on weight */
qsort(scores, total_unknown, sizeof (active_scores),
active_scores_compare);
/* change doc types */
for (k = 0 ; k < num_to_add; k++)
{
bow_cdoc *doc = bow_cdocs_di2doc (doc_barrel->cdocs, scores[k].di);
assert(doc);
assert(doc->type == bow_doc_unlabeled);
bow_verbosify(bow_progress, "Labeling %s, weight %f\n", doc->filename,
scores[k].weight);
doc->type = bow_doc_train;
}
return;
}
void
active_select_random (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown,
int committee_size)
{
int j;
int k;
bow_cdoc *doc;
assert(num_to_add <= total_unknown);
for (j=0, k=0; k < num_to_add; j++)
{
int scoresi = rand() % total_unknown;
int doci;
doci = scores[scoresi].di;
doc = bow_cdocs_di2doc (doc_barrel->cdocs, doci);
assert (doc);
if (doc->type == bow_doc_unlabeled)
{
doc->type = bow_doc_train;
bow_verbosify(bow_progress, "Labeling %s\n", doc->filename);
k++;
}
if (j > doc_barrel->cdocs->length * 1000)
bow_error ("Random number generator could not find enough "
"unlabeled documents to convert.");
}
return;
}
void
active_select_stream_ve (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown,
int committee_size)
{
int j;
bow_cdoc *doc;
int num_classes = bow_barrel_num_classes (doc_barrel);
double *mean_class_dist;
double mean_class_sum;
int committee;
int class;
int k;
int si;
assert(num_to_add <= total_unknown);
mean_class_dist = alloca (sizeof (double) * num_classes);
/* Calculate the entropy of the class labels, H(Class|d,Committee),
where Class and Committee are random varibles, and put this in
SCORES->WEIGHT. */
for (k = 0; k < total_unknown; k++)
{
scores[k].weight = 0;
/* Initialize the scores to be 'votes' */
for (committee = 0; committee < committee_size; committee++)
{
scores[k].scores[committee][0].weight = 1.0;
for (si = 1; si < num_classes; si++)
scores[k].scores[committee][si].weight = 0.0;
}
/* Initialize the mean class distribution for this document. */
for (class = 0; class < num_classes; class++)
mean_class_dist[class] = 0;
for (committee = 0; committee < committee_size; committee++)
for (class = 0; class < num_classes; class++)
mean_class_dist[scores[k].scores[committee][class].di]
+= scores[k].scores[committee][class].weight;
mean_class_sum = 0;
for (class = 0; class < num_classes; class++)
mean_class_sum += mean_class_dist[class];
assert (mean_class_sum > committee_size * 0.999);
assert (mean_class_sum < committee_size * 1.001);
for (class = 0; class < num_classes; class++)
mean_class_dist[class] /= mean_class_sum;
/* Calculate the entropy of the mean class distribution */
for (class = 0; class < bow_barrel_num_classes (doc_barrel); class++)
{
if (1e-100 < mean_class_dist[class])
{
scores[k].weight -=
(mean_class_dist[class]
* log (mean_class_dist[class]));
}
}
/* adjust for the correct log factor */
scores[k].weight *= 1 / log(2);
/* convert to a probability */
scores[k].weight /= log (bow_barrel_num_classes (doc_barrel)) / log(2);
/* multiply in the epsilon factor */
scores[k].weight *= active_stream_epsilon;
/* Entropy must be greater than or equal to 0 */
if (scores[k].weight < -0.1)
bow_error("scores[k].weight < -0.1: %.20f", scores[k].weight);
}
/* select some documents randomly according to the weights */
for (j=0, k=0; k < num_to_add; j++)
{
int scoresi = rand() % total_unknown;
int doci;
double coin_flip;
doci = scores[scoresi].di;
doc = bow_cdocs_di2doc (doc_barrel->cdocs, doci);
assert (doc);
if (doc->type == bow_doc_unlabeled)
{
coin_flip = bow_random_double (0,1);
if (scores[scoresi].weight > coin_flip)
{
doc->type = bow_doc_train;
k++;
bow_verbosify (bow_progress, "Labeling %s, weight %f, flip %f", doc->filename,
scores[scoresi].weight, coin_flip);
for (committee=0; committee < committee_size; committee++)
bow_verbosify(bow_progress, " [(%d, %f) (%d, %f)]",
scores[scoresi].scores[committee][0].di,
scores[scoresi].scores[committee][0].weight,
scores[scoresi].scores[committee][1].di,
scores[scoresi].scores[committee][1].weight);
bow_verbosify(bow_progress, "\n");
}
}
if (j > doc_barrel->cdocs->length * 1000)
bow_error ("Random number generator could not find enough "
"unlabeled documents to convert.");
}
return;
}
void
active_select_stream_kl (bow_barrel *doc_barrel, active_scores *scores,
int num_to_add, int total_unknown,
int committee_size)
{
int j;
bow_cdoc *doc;
int num_classes = bow_barrel_num_classes (doc_barrel);
double *mean_class_dist;
double mean_class_sum;
int committee;
int class;
int k;
mean_class_dist = alloca (sizeof (double) * num_classes);
assert(num_to_add <= total_unknown);
/* ensures our max-kl for probability mapping is correct */
assert(bow_barrel_num_classes(doc_barrel) >= committee_size);
/* Calculate the entropy of the class labels, H(Class|d,Committee),
where Class and Committee are random varibles, and put this in
SCORES->WEIGHT. */
for (k = 0; k < total_unknown; k++)
{
scores[k].weight = 0;
/* Initialize the mean class distribution for this document. */
for (class = 0; class < num_classes; class++)
mean_class_dist[class] = 0;
for (committee = 0; committee < committee_size; committee++)
for (class = 0; class < num_classes; class++)
mean_class_dist[scores[k].scores[committee][class].di]
+= scores[k].scores[committee][class].weight;
mean_class_sum = 0;
for (class = 0; class < num_classes; class++)
mean_class_sum += mean_class_dist[class];
assert (mean_class_sum > committee_size * 0.999);
assert (mean_class_sum < committee_size * 1.001);
for (class = 0; class < num_classes; class++)
mean_class_dist[class] /= mean_class_sum;
/* Set WEIGHT to KL-divergence-to-the-mean averaged over all
committee members. */
for (committee = 0; committee < committee_size; committee++)
{
for (class = 0; class < bow_barrel_num_classes (doc_barrel); class++)
{
if (1e-100 < scores[k].scores[committee][class].weight)
{
scores[k].weight -=
((1.0 / committee_size)
* scores[k].scores[committee][class].weight
* log (mean_class_dist[scores[k].scores[committee][class].di]
/ scores[k].scores[committee][class].weight));
if (scores[k].weight < -0.1)
bow_error("scores[k].weight < -0.1: %.20f, %.20f", scores[k].weight,
log (mean_class_dist[scores[k].scores[committee][class].di]
/ scores[k].scores[committee][class].weight));
}
}
}
/* KL divergence must be greater than or equal to 0 */
if (scores[k].weight < -0.1)
bow_error("scores[k].weight < -0.1: %.20f", scores[k].weight);
/* adjust for the correct log factor */
scores[k].weight *= 1.0 / log(2);
/* convert to a probability by scaling with the max kl-to-the-mean */
scores[k].weight /= -1.0 * log (1.0 / (double) committee_size) / log(2);
/* multiply in the epsilon factor */
scores[k].weight *= active_stream_epsilon;
}
/* select some documents randomly according to the weights */
for (j=0, k=0; k < num_to_add; j++)
{
int scoresi = rand() % total_unknown;
int doci;
double coin_flip;
doci = scores[scoresi].di;
doc = bow_cdocs_di2doc (doc_barrel->cdocs, doci);
assert (doc);
if (doc->type == bow_doc_unlabeled)
{
coin_flip = bow_random_double (0,1);
if (scores[scoresi].weight > coin_flip)
{
doc->type = bow_doc_train;
k++;
bow_verbosify (bow_progress, "Labeling %s, weight %f, flip %f", doc->filename,
scores[scoresi].weight, coin_flip);
for (committee=0; committee < committee_size; committee++)
bow_verbosify(bow_progress, " [(%d, %f) (%d, %f)]",
scores[scoresi].scores[committee][0].di,
scores[scoresi].scores[committee][0].weight,
scores[scoresi].scores[committee][1].di,
scores[scoresi].scores[committee][1].weight);
bow_verbosify(bow_progress, "\n");
}
}
if (j > doc_barrel->cdocs->length * 1000)
bow_error ("Random number generator could not find enough "
"unlabeled documents to convert.");
}
return;
}
/* Functions for calculating document density. */
int
active_cdoc_is_used_for_density (bow_cdoc *cdoc)
{
return ((cdoc->type == bow_doc_train) ||
(cdoc->type == bow_doc_unlabeled) ||
(cdoc->type == bow_doc_pool) ||
(cdoc->type == bow_doc_waiting));
}
/* Given a document barrel, set the CDOC->NORMALIZER to the document
word entropy. Return the sum of the background cross entropies of
all the documents. Assumes that IDF has already been set to Pr(w) */
double
active_doc_barrel_set_entropy (bow_barrel *barrel)
{
bow_wv *wv;
bow_dv_heap *heap;
int wvi;
double pr_w_d;
double entropy;
double entropy_sum = 0;
double total_background_kl = 0;
int di;
bow_cdoc *cdoc;
bow_dv *dv;
double word_kl;
heap = bow_test_new_heap (barrel);
/* xxx Make sure to update CDOC->WORD_COUNT for a new vocabulary! */
while ((di = bow_heap_next_wv (heap, barrel, &wv, active_cdoc_is_used_for_density)) != -1)
{
cdoc = bow_array_entry_at_index (barrel->cdocs, di);
entropy = 0;
for (wvi = 0; wvi < wv->num_entries; wvi++)
{
pr_w_d = ((double)wv->entry[wvi].count) / cdoc->word_count;
entropy -= pr_w_d * log (pr_w_d);
dv = bow_wi2dvf_dv (barrel->wi2dvf, wv->entry[wvi].wi);
word_kl = (- pr_w_d * log ((1 - active_alpha) * dv->idf));
assert (word_kl >= 0);
total_background_kl += word_kl;
}
total_background_kl -= entropy;
cdoc->normalizer = entropy;
entropy_sum += entropy;
}
return total_background_kl;
}
/* Given a document barrel, set the WI2DVF->IDF to Pr(w) */
void
active_doc_barrel_set_pr_w (bow_barrel *barrel)
{
int wi, max_wi, dvi;
int total_num_words;
bow_dv *dv;
max_wi = MIN (barrel->wi2dvf->size, bow_num_words ());
total_num_words = 0;
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (!dv)
continue;
dv->idf = 0;
for (dvi = 0; dvi < dv->length; dvi++)
{
dv->idf += dv->entry[dvi].count;
total_num_words += dv->entry[dvi].count;
}
}
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (!dv)
continue;
dv->idf /= total_num_words;
}
}
/* Return the density of document WV, calculated using a KL divergence
distance to all other documents. */
float
active_wv_density (bow_wv *wv, bow_barrel *barrel,
float background_kl)
{
int wvi;
/* bow_bitvec *document_touched = bow_bitvec_new (1, barrel->cdocs->length); */
double pr_w_d;
double pr_w_wv;
double pr_w_wv_missing;
double total_kl; /* sum of KL divergence to all other docs */
bow_dv *dv;
int dvi;
bow_cdoc *cdoc;
/* Set to background KL, that a document with no words would have. */
pr_w_wv_missing = 1.0 / (wv->num_entries + barrel->wi2dvf->num_words);
/*total_kl = - barrel->cdocs->length * log (pr_w_wv_missing);*/
total_kl = background_kl;
assert (total_kl == total_kl);
for (wvi = 0; wvi < wv->num_entries; wvi++)
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, wv->entry[wvi].wi);
if (!dv)
continue;
pr_w_wv = ((active_alpha *
((double)wv->entry[wvi].count) / wv->num_entries)
+ ((1 - active_alpha) * dv->idf));
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs, dv->entry[dvi].di);
pr_w_d = ((double)dv->entry[dvi].count) / cdoc->word_count;
/* Remove from the total what we said its contribution would
be above in the background calculation. */
/*total_kl += pr_w_d * log (pr_w_wv_missing);*/
dv = bow_wi2dvf_dv (barrel->wi2dvf, wv->entry[wvi].wi);
total_kl += pr_w_d * log ((1 - active_alpha) * dv->idf);
assert (total_kl == total_kl);
/* Add in the true contribution */
total_kl -= pr_w_d * log (pr_w_wv);
assert (total_kl == total_kl);
}
}
return total_kl;
}
/* Given a document barrel, set the CDOC->PRIOR to the document
density, using a KL divergence distance to all other
documents. Uses train and unlabeled documents. Also sets the
CDOC->NORMALIZER to the document entropy */
void
active_doc_barrel_set_density (bow_barrel *barrel)
{
bow_dv_heap *heap;
int di;
bow_wv *wv;
bow_cdoc *cdoc;
double background_kl;
active_doc_barrel_set_pr_w (barrel);
background_kl = active_doc_barrel_set_entropy (barrel);
heap = bow_test_new_heap (barrel);
while ((di = bow_heap_next_wv (heap, barrel, &wv, active_cdoc_is_used_for_density)) != -1)
{
cdoc = bow_array_entry_at_index (barrel->cdocs, di);
cdoc->prior = active_wv_density (wv, barrel, background_kl);
cdoc->prior = exp (- active_beta * cdoc->prior / barrel->cdocs->length);
/* printf ("%10g %s\n", cdoc->prior, cdoc->filename); */
}
}
/* Create a class barrel using active learning */
bow_barrel *
active_learn (bow_barrel *doc_barrel)
{
bow_barrel *vpc_barrel = NULL; /* the vector-per-class barrel */
int max_ci;
int ci;
int di;
int mi;
int round_num;
int actual_num_hits;
int num_unlabeled_docs = 0;
int orig_num_unlabeled_docs;
bow_dv_heap *test_heap; /* we'll extract test WV's from here */
bow_wv *query_wv;
active_scores *scores;
bow_cdoc *doc_cdoc;
bow_cdoc *class_cdoc;
rainbow_method *secondary_method;
/* Set the CDOC->PRIOR to the "density" value. */
if (active_selection_method == dkl)
active_doc_barrel_set_density (doc_barrel);
/* initialize variables */
max_ci = bow_barrel_num_classes(doc_barrel);
secondary_method = (rainbow_method*)
bow_method_at_name (active_secondary_method);
/* change all but vpc_with_weights */
doc_barrel->method->set_weights = secondary_method->set_weights;
doc_barrel->method->scale_weights = secondary_method->scale_weights;
doc_barrel->method->normalize_weights = secondary_method->normalize_weights;
doc_barrel->method->vpc_set_priors = secondary_method->vpc_set_priors;
doc_barrel->method->score = secondary_method->score;
doc_barrel->method->wv_set_weights = secondary_method->wv_set_weights;
doc_barrel->method->wv_normalize_weights =
secondary_method->wv_normalize_weights;
doc_barrel->method->free_barrel = secondary_method->free_barrel;
doc_barrel->method->params = secondary_method->params;
/* find the binary positive class, if needed */
if (active_binary_pos_classname != NULL)
{
assert(bow_barrel_num_classes(doc_barrel) == 2);
for (ci = 0; ci < bow_barrel_num_classes(doc_barrel); ci++)
{
if (!strcmp(active_binary_pos_classname,
filename_to_classname
(bow_barrel_classname_at_index (doc_barrel, ci))))
{
active_binary_pos_ci = ci;
break;
}
}
if (active_binary_pos_ci == -1)
{
bow_error("No such class %s.", active_binary_pos_classname);
}
}
/* print out the model docs */
for (di=0; di < doc_barrel->cdocs->length; di++)
{
bow_cdoc *cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
if (cdoc->type == bow_doc_train)
bow_verbosify (bow_progress, "Initial %s\n", cdoc->filename);
}
/* count the number of unlabeled docs */
for (di=0; di < doc_barrel->cdocs->length; di++)
{
bow_cdoc *cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
if (cdoc->type == bow_doc_unlabeled)
num_unlabeled_docs++;
}
orig_num_unlabeled_docs = num_unlabeled_docs;
/* allocate the correct amount of space for unlabeled scoring */
scores = bow_malloc (sizeof(active_scores) * num_unlabeled_docs);
for (di = 0; di < num_unlabeled_docs; di++)
{
scores[di].scores = bow_malloc (sizeof(bow_score *) * active_committee_size);
for (mi = 0; mi < active_committee_size; mi++)
{
scores[di].scores[mi] = bow_malloc (sizeof (bow_score) *
bow_barrel_num_classes(doc_barrel));
}
}
/* make the class barrel */
vpc_barrel = bow_barrel_new (doc_barrel->wi2dvf->size,
doc_barrel->cdocs->length-1,
doc_barrel->cdocs->entry_size,
doc_barrel->cdocs->free_func);
vpc_barrel->method = doc_barrel->method;
vpc_barrel->classnames = bow_int4str_new (0);
/* And, we're off */
for (round_num = 0; round_num < active_num_rounds; round_num++)
{
int hiti = 0;
/* Re-create the vector-per-class barrel in accordance with the
new train/test settings. */
/* if we're pruning the vocab, do that now - fix for unlabeled percent */
if (bow_prune_vocab_by_infogain_n)
{
/* Change barrel by removing words with small info gain, if requested. */
bow_barrel_keep_top_words_by_infogain
(bow_prune_vocab_by_infogain_n, doc_barrel,
bow_barrel_num_classes (doc_barrel));
}
/* Set word_count set correctly and set the entropy of each document
in the normalizer of the cdoc; do this after all vocab changing */
{
query_wv = NULL;
/* Create the heap from which we'll get WV's. */
test_heap = bow_test_new_heap (doc_barrel);
/* Loop once for each document. */
while ((di = bow_heap_next_wv (test_heap, doc_barrel, &query_wv,
bow_cdoc_yes)) != -1)
{
int word_count = 0;
int wvi;
doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs,
di);
bow_wv_set_weights (query_wv, vpc_barrel);
bow_wv_normalize_weights (query_wv, vpc_barrel);
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
{
word_count += query_wv->entry[wvi].count;
}
doc_cdoc->word_count = word_count;
doc_cdoc->normalizer = active_document_entropy(query_wv);
}
}
/* generate test stats for the step in active learning */
if (active_test_stats)
{
bow_em_perturb_method reset_perturb_start = -1;
int reset_num_em_runs = -1;
int reset_em_cross_entropy = -1;
/* turn variance off for test stats */
if (bow_em_perturb_starting_point != bow_em_perturb_none)
{
reset_perturb_start = bow_em_perturb_starting_point;
bow_em_perturb_starting_point = bow_em_perturb_none;
}
/* make a real number of EM rounds just for printing tests */
if (active_final_em)
{
reset_num_em_runs = bow_em_num_em_runs;
bow_em_num_em_runs = 7;
}
/* Do no EM for stats-reporting */
if (active_no_final_em)
{
reset_num_em_runs = bow_em_num_em_runs;
bow_em_num_em_runs = 1;
}
/* turn cross entropy off if just testing docs */
if (active_selection_method == wkl
|| active_selection_method == dkl)
{
reset_em_cross_entropy = em_cross_entropy;
em_cross_entropy = 0;
}
if (vpc_barrel != NULL)
bow_free_barrel (vpc_barrel);
vpc_barrel =
(*(secondary_method->vpc_with_weights))(doc_barrel);
active_test(stdout, doc_barrel, vpc_barrel);
/* turn variance back on for committee members */
if (reset_perturb_start != -1)
bow_em_perturb_starting_point = reset_perturb_start;
/* turn EM off for committee members */
if (reset_num_em_runs != -1)
bow_em_num_em_runs = reset_num_em_runs;
/* turn cross entropy back on if necessary */
if (reset_em_cross_entropy != -1)
em_cross_entropy = reset_em_cross_entropy;
}
if (active_perturb_after_em)
{
if (vpc_barrel)
bow_barrel_free(vpc_barrel);
vpc_barrel =
(*(secondary_method->vpc_with_weights))(doc_barrel);
}
for (mi = 0; mi < active_committee_size; mi++)
{
bow_barrel *comm_barrel = NULL;
hiti = 0;
if (active_perturb_after_em)
{
comm_barrel = bow_barrel_copy(vpc_barrel);
bow_em_perturb_starting_point = bow_em_perturb_with_dirichlet;
bow_em_perturb_weights(comm_barrel, doc_barrel);
bow_em_perturb_starting_point = bow_em_perturb_none;
}
else
{
comm_barrel =
(*(secondary_method->vpc_with_weights))(doc_barrel);
}
if (active_print_committee_matrices)
{
active_test(stdout, doc_barrel, comm_barrel);
}
/* score all the unlabeled docs */
/* Create the heap from which we'll get WV's. */
test_heap = bow_test_new_heap (doc_barrel);
/* Initialize QUERY_WV so BOW_TEST_NEXT_WV() knows not to try to free */
query_wv = NULL;
/* Loop once for each unlabeled document. */
while ((di = bow_heap_next_wv (test_heap, doc_barrel, &query_wv,
bow_cdoc_is_unlabeled))
!= -1)
{
doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs,
di);
class_cdoc = bow_array_entry_at_index (comm_barrel->cdocs,
doc_cdoc->class);
bow_wv_set_weights (query_wv, comm_barrel);
bow_wv_normalize_weights (query_wv, comm_barrel);
actual_num_hits =
bow_barrel_score (comm_barrel,
query_wv, scores[hiti].scores[mi],
bow_barrel_num_classes(comm_barrel), -1);
assert (actual_num_hits == bow_barrel_num_classes(comm_barrel));
if (mi == 0)
scores[hiti].di = di;
else
assert (di == scores[hiti].di);
hiti++;
}
bow_barrel_free (comm_barrel);
}
num_unlabeled_docs = hiti;
/* remap the scores if desired */
if (active_remap_scores_pr)
active_remap_scores(doc_barrel, scores,
num_unlabeled_docs, active_committee_size);
/* choose docs to convert to model */
active_select_docs(doc_barrel, scores,
active_add_per_round, num_unlabeled_docs,
active_committee_size);
}
/* turn off perturbing for building final barrel */
if (bow_em_perturb_starting_point != bow_em_perturb_none)
{
bow_em_perturb_starting_point = bow_em_perturb_none;
}
/* make a real number of EM rounds if final em run */
if (active_final_em)
{
bow_em_num_em_runs = 7;
}
/* Do no EM for stats-reporting */
if (active_no_final_em)
{
bow_em_num_em_runs = 1;
}
/* turn cross entropy off if just testing docs */
if (active_selection_method == wkl
|| active_selection_method == dkl)
{
em_cross_entropy = 0;
}
if (vpc_barrel != NULL)
bow_free_barrel(vpc_barrel);
vpc_barrel =
(*(secondary_method->vpc_with_weights))(doc_barrel);
/* free scores */
for (di = 0; di < orig_num_unlabeled_docs ; di++)
{
for (mi = 0; mi < active_committee_size; mi ++)
{
bow_free (scores[di].scores[mi]);
}
bow_free(scores[di].scores);
}
bow_free(scores);
return vpc_barrel;
}
void
active_undef_prior (bow_barrel *vpc_barrel,
bow_barrel *doc_barrel)
{
bow_error("Active priors depends on secondary method.");
return;
}
int
active_undef_score (bow_barrel *barrel, bow_wv *query_wv,
bow_score *bscores, int bscores_len,
int loo_class)
{
bow_error("Active scoring depends on secondary method.");
return -1;
}
/* Run test trials, outputing results to TEST_FP. The results are
indended to be read and processed by the Perl script
./rainbow-stats. */
void
active_test (FILE *test_fp, bow_barrel *rainbow_doc_barrel,
bow_barrel *rainbow_class_barrel)
{
bow_dv_heap *test_heap; /* we'll extract test WV's from here */
bow_wv *query_wv;
int di; /* a document index */
bow_score *hits = NULL;
int num_hits_to_retrieve=0;
int actual_num_hits;
int hi; /* hit index */
bow_cdoc *doc_cdoc;
bow_cdoc *class_cdoc;
fprintf (test_fp, "#0\n");
num_hits_to_retrieve = bow_barrel_num_classes (rainbow_class_barrel);
hits = alloca (sizeof (bow_score) * num_hits_to_retrieve);
/* Create the heap from which we'll get WV's. */
test_heap = bow_test_new_heap (rainbow_doc_barrel);
/* Initialize QUERY_WV so BOW_TEST_NEXT_WV() knows not to try to free */
query_wv = NULL;
/* Loop once for each test document. NOTE: This will skip documents
that don't have any words that are in the vocabulary. */
while ((di = bow_heap_next_wv (test_heap, rainbow_doc_barrel, &query_wv,
bow_cdoc_is_test)) != -1)
{
doc_cdoc = bow_array_entry_at_index (rainbow_doc_barrel->cdocs,
di);
class_cdoc = bow_array_entry_at_index (rainbow_class_barrel->cdocs,
doc_cdoc->class);
bow_wv_set_weights (query_wv, rainbow_class_barrel);
bow_wv_normalize_weights (query_wv, rainbow_class_barrel);
actual_num_hits =
bow_barrel_score (rainbow_class_barrel,
query_wv, hits,
num_hits_to_retrieve, -1);
assert (actual_num_hits == num_hits_to_retrieve);
#if 0
printf ("%8.6f %d %8.6f %8.6f %d ",
class_cdoc->normalizer,
class_cdoc->word_count,
class_cdoc->normalizer / class_cdoc->word_count,
class_cdoc->prior,
doc_cdoc->class);
if (hits[0].di == doc_cdoc->class)
printf ("1\n");
else
printf ("0\n");
#endif
fprintf (test_fp, "%s %s ",
doc_cdoc->filename,
filename_to_classname(class_cdoc->filename));
for (hi = 0; hi < actual_num_hits; hi++)
{
class_cdoc =
bow_array_entry_at_index (rainbow_class_barrel->cdocs,
hits[hi].di);
fprintf (test_fp, "%s:%.*g ",
bow_barrel_classname_at_index
(rainbow_class_barrel, hits[hi].di),
bow_score_print_precision,
hits[hi].weight);
}
fprintf (test_fp, "\n");
}
}
rainbow_method bow_method_active =
{
"active",
NULL, /* bow_leave_weights_alone_since_theyre_really_counts */
0, /* no weight scaling function */
NULL, /* bow_barrel_normalize_weights_by_summing, */
active_learn,
active_undef_prior,
active_undef_score,
bow_wv_set_weights_to_count,
NULL, /* no need for extra weight normalization */
NULL
};
void _register_method_active () __attribute__ ((constructor));
void _register_method_active ()
{
static int done = 0;
if (done)
return;
bow_method_register_with_name ((bow_method*)&bow_method_active,
"active",
sizeof (rainbow_method),
&active_argp_child);
bow_argp_add_child (&active_argp_child);
done = 1;
}
|