1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
/* A simple implementation of using EM to estimate naive Bayes
parameters from labeled and unlabeled documents */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Kamal Nigam <knigam@cs.cmu.edu>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#include <bow/nbsimple.h>
#include <math.h>
#include <argp/argp.h>
#include <stdlib.h>
/* This function is in rainbow.c */
extern void bow_print_log_odds_ratio (FILE *fp,
bow_barrel *barrel, int num_to_print);
enum {
EMSIMPLE_NUM_RUNS = 19000,
EMSIMPLE_PRINT_ACCURACY,
EMSIMPLE_NO_INIT
};
static int bow_emsimple_num_em_runs = 10;
static int (* emsimple_accuracy_docs)(bow_cdoc *) = NULL;
static int emsimple_no_init = 0;
static struct argp_option emsimple_options[] =
{
{0,0,0,0,
"EMSIMPLE options:", 90},
{"emsimple-num-iterations", EMSIMPLE_NUM_RUNS, "NUM", 0,
"Number of EM iterations to run when building model."},
{"emsimple-print-accuracy", EMSIMPLE_PRINT_ACCURACY, "TYPE", 0,
"When running emsimple, print the accuracy of documents at each EM round. "
"Type can be validation, train, or test."},
{"emsimple-no-init", EMSIMPLE_NO_INIT, 0, 0,
"Use this option when using emsimple as the secondary method for genem"},
{0, 0}
};
error_t
emsimple_parse_opt (int key, char *arg, struct argp_state *state)
{
switch (key)
{
case EMSIMPLE_NUM_RUNS:
bow_emsimple_num_em_runs = atoi(arg);
break;
case EMSIMPLE_PRINT_ACCURACY:
if (!strcmp (arg, "validation"))
emsimple_accuracy_docs = bow_cdoc_is_validation;
else if (!strcmp (arg, "train"))
emsimple_accuracy_docs = bow_cdoc_is_train;
else if (!strcmp (arg, "test"))
emsimple_accuracy_docs = bow_cdoc_is_test;
else
bow_error("Unknown document type for --emsimple-print-accuracy");
break;
case EMSIMPLE_NO_INIT:
emsimple_no_init = 1;
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static const struct argp emsimple_argp =
{
emsimple_options,
emsimple_parse_opt
};
static struct argp_child emsimple_argp_child =
{
&emsimple_argp, /* This child's argp structure */
0, /* flags for child */
0, /* optional header in help message */
0 /* arbitrary group number for ordering */
};
/* End of command-line options specific to EMSIMPLE */
/* Calculate the accuracy of documents indicated by emsimple_accuracy_docs */
float
emsimple_calculate_accuracy (bow_barrel *doc_barrel, bow_barrel *class_barrel)
{
bow_dv_heap *test_heap; /* we'll extract test WV's from here */
bow_wv *query_wv;
int di; /* a document index */
bow_score *hits;
int actual_num_hits;
bow_cdoc *doc_cdoc;
int num_tested = 0;
int num_correct = 0;
/* Create the heap from which we'll get WV's. Initialize QUERY_WV so
BOW_TEST_NEXT_WV() knows not to try to free. */
hits = alloca (sizeof (bow_score));
test_heap = bow_test_new_heap (doc_barrel);
query_wv = NULL;
/* Loop once for each test document. Check to see if it was
correctly classified.*/
while ((di = bow_heap_next_wv (test_heap, doc_barrel, &query_wv,
emsimple_accuracy_docs))
!= -1)
{
doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs,
di);
bow_wv_set_weights (query_wv, class_barrel);
bow_wv_normalize_weights (query_wv, class_barrel);
actual_num_hits = bow_barrel_score (class_barrel, query_wv, hits, 1, -1);
assert (actual_num_hits == 1);
if (doc_cdoc->class == hits[0].di)
num_correct++;
num_tested++;
}
return (((float) num_correct) / ((float) num_tested));
}
/* Create a naive Bayes style class barrel using EM to estimate
parameters from labeled and unlabeled documents. */
bow_barrel *
bow_emsimple_new_vpc_with_weights (bow_barrel *doc_barrel)
{
bow_barrel *vpc_barrel; /* the vector-per-class barrel */
int wi; /* word index */
int max_wi; /* the number of words */
int dvi; /* document vector index */
int ci; /* class index */
bow_dv *dv; /* document vector */
int di; /* document index */
bow_dv_heap *test_heap=NULL; /* heap for extracting document word vectors */
bow_wv *query_wv; /* word vector */
bow_score *hits; /* classification scores */
int actual_num_hits; /* number of scores */
int hi; /* hit index */
bow_cdoc *doc_cdoc; /* a document barrel cdoc */
int num_tested; /* number of documents classified */
int em_runs = 0; /* number of rounds of EM performed so far */
int max_ci; /* the number of classes */
/* initialize some variables */
max_ci = bow_barrel_num_classes(doc_barrel);
max_wi = MIN (doc_barrel->wi2dvf->size, bow_num_words ());
/* set the cdoc->word_count to be the number of word occurrences in
each document. If any vocab selection has occurred, this is set
to an incorrect value. */
{
/* Create the heap from which we'll get word vectors. */
query_wv = NULL;
test_heap = bow_test_new_heap (doc_barrel);
/* Iterate over each document. */
while (-1 != (di = bow_heap_next_wv (test_heap, doc_barrel, &query_wv,
bow_cdoc_yes)))
{
int word_count = 0;
int wvi;
doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs,
di);
/* count the total number of word occurrences for this document */
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
word_count += query_wv->entry[wvi].count;
/* set the document's word_count to the true value */
doc_cdoc->word_count = word_count;
}
}
if (!emsimple_no_init)
{
/* Initialize memory and values for each document cdoc->class_probs.
This holds the class membership for each labeled and unlabeled
document. For labeled documents, this is the true class
membership. For unlabeled documents, we initialize to zero, but
later estimate these memberships using EM. */
for (di=0; di < doc_barrel->cdocs->length; di++)
{
bow_cdoc *cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
cdoc->class_probs = bow_malloc (sizeof (float) * max_ci);
/* initialize the class_probs to all zeros */
for (ci=0; ci < max_ci; ci++)
cdoc->class_probs[ci] = 0.0;
/* If document is a training document, set its class_probs to
match its class. This implicitly starts the EM search using
just the labeled data. */
if (cdoc->type == bow_doc_train)
cdoc->class_probs[cdoc->class] = 1.0;
}
}
/* Create an empty barrel; we fill it with vector-per-class
data and return it. */
{
vpc_barrel = bow_barrel_new (doc_barrel->wi2dvf->size,
doc_barrel->cdocs->length,
doc_barrel->cdocs->entry_size,
doc_barrel->cdocs->free_func);
vpc_barrel->method = doc_barrel->method;
vpc_barrel->classnames = bow_int4str_new (0);
/* setup the cdoc structure for the class barrel, except for the
word counts, which we'll do later. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc cdoc;
/* create the cdoc structure */
cdoc.type = bow_doc_train;
cdoc.normalizer = -0.0f; /* unused value*/
cdoc.word_count = 0; /* just a temporary value */
cdoc.prior = 0; /* just a temporary value */
cdoc.filename = strdup (bow_barrel_classname_at_index (doc_barrel,
ci));
if (!cdoc.filename)
bow_error ("Memory exhausted.");
bow_barrel_add_classname(vpc_barrel, cdoc.filename);
cdoc.class_probs = NULL;
cdoc.class = ci;
bow_array_append (vpc_barrel->cdocs, &cdoc);
}
}
/* let's do some EM */
while (em_runs < bow_emsimple_num_em_runs)
{
em_runs++;
/* The M-step. Build the wi2dvf of the class barrel by counting words */
bow_verbosify (bow_progress,
"Making class barrel by counting words: ");
/* get a new wi2dvf structure for our class barrel */
if (vpc_barrel->wi2dvf != NULL)
bow_wi2dvf_free(vpc_barrel->wi2dvf);
vpc_barrel->wi2dvf = bow_wi2dvf_new (doc_barrel->wi2dvf->size);
/* Add entries to the wi2dvf. Sum together the word weights for
individual labeled and unlabeled documents, multiplying by
their class membership. */
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (doc_barrel->wi2dvf, wi);
/* skip words that do not occur in any documents */
if (!dv)
continue;
/* iterate over all documents that have an occurrence of word wi */
for (dvi = 0; dvi < dv->length; dvi++)
{
bow_cdoc *cdoc;
di = dv->entry[dvi].di;
cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
/* skip documents that have no words */
if (cdoc->word_count == 0)
continue;
/* Use only labeled and unlabeled documents when
building our barrel's wi2dvf */
if (cdoc->type == bow_doc_train ||
cdoc->type == bow_doc_unlabeled)
{
/* add weights to all classes, based on the class
membership */
for (ci=0; ci < max_ci; ci++)
if (cdoc->class_probs[ci] > 0)
{
float addition = 0;
if (bow_event_model == bow_event_word)
addition = cdoc->class_probs[ci] *
(float) dv->entry[dvi].count;
else if (bow_event_model == bow_event_document_then_word)
addition = cdoc->class_probs[ci] *
(float) dv->entry[dvi].count *
(float) bow_event_document_then_word_document_length /
(float) cdoc->word_count;
else
bow_error("No implementation of this event model.");
/* add addition weight to the class-word pair */
bow_wi2dvf_add_wi_di_count_weight
(&(vpc_barrel->wi2dvf),
wi, ci,
1, /* dummy value */
addition);
}
}
}
if (wi % 100 == 0)
bow_verbosify (bow_progress, "\b\b\b\b\b\b%6d", max_wi - wi);
}
bow_verbosify (bow_progress, "\n");
/* bow_print_log_odds_ratio (stderr, vpc_barrel, 5); */
/* set the word_count of each class to the total number of word
occurrences per class */
bow_nbsimple_set_cdoc_word_count_from_wi2dvf_weights (vpc_barrel);
/* set priors */
if (doc_barrel->method->vpc_set_priors && !bow_uniform_class_priors)
(*doc_barrel->method->vpc_set_priors) (vpc_barrel, doc_barrel);
/* Calculate accuracy of the validation set*/
if (emsimple_accuracy_docs)
bow_verbosify (bow_progress, "Correct: %f\n",
emsimple_calculate_accuracy (doc_barrel, vpc_barrel));
/* We have a new vpc barrel to use. Let's now do the E-step,
and classify all our documents. */
/* Skip the E-step if on the last iteration of EM */
if (em_runs < bow_emsimple_num_em_runs)
{
/* Classify all the unlabeled documents to re-estimate their
class membership */
bow_verbosify(bow_progress, "\nClassifying unlabeled documents: ");
/* Initialize QUERY_WV so BOW_TEST_NEXT_WV() knows not to
try to free. Create the heap from which we'll get
WV's. */
query_wv = NULL;
hits = alloca (sizeof (bow_score) * max_ci);
num_tested = 0;
test_heap = bow_test_new_heap (doc_barrel);
/* Loop once for each unlabeled document. */
while ((di = bow_heap_next_wv (test_heap, doc_barrel, &query_wv,
bow_cdoc_is_unlabeled))
!= -1)
{
doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs,
di);
bow_wv_set_weights (query_wv, vpc_barrel);
bow_wv_normalize_weights (query_wv, vpc_barrel);
actual_num_hits =
bow_barrel_score (vpc_barrel,
query_wv, hits,
max_ci, -1);
assert (actual_num_hits == max_ci);
/* set the class probs to the naive bayes score */
for (hi = 0; hi < actual_num_hits; hi++)
doc_cdoc->class_probs[hits[hi].di] = hits[hi].weight;
if (num_tested % 100 == 0)
bow_verbosify (bow_progress, "\b\b\b\b\b\b%6d", num_tested);
num_tested++;
}
bow_verbosify(bow_progress, "\b\b\b\b\b\b%6d\n", num_tested);
}
}
return vpc_barrel;
}
/* Set the class prior probabilities by doing a weighted (by class
membership) count of the number of labeled and unlabeled documents in
each class. */
void
bow_emsimple_set_priors_using_class_probs (bow_barrel *vpc_barrel,
bow_barrel *doc_barrel)
{
float prior_sum = 0;
int ci;
int max_ci = vpc_barrel->cdocs->length;
int di;
/* Zero them. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior = 0;
}
/* Count each document for each class according to the
class_probs. */
for (di = 0; di < doc_barrel->cdocs->length; di++)
{
bow_cdoc *doc_cdoc = bow_array_entry_at_index (doc_barrel->cdocs, di);
bow_cdoc *vpc_cdoc;
if (doc_cdoc->type == bow_doc_train ||
doc_cdoc->type == bow_doc_unlabeled)
{
for (ci = 0; ci < max_ci; ci++)
{
vpc_cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
vpc_cdoc->prior += doc_cdoc->class_probs[ci];
}
}
}
/* Sum them all. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
prior_sum += cdoc->prior;
}
/* Normalize to set the prior. */
for (ci = 0; ci < max_ci; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (vpc_barrel->cdocs, ci);
cdoc->prior /= prior_sum;
if (cdoc->prior == 0)
bow_verbosify (bow_progress,
"WARNING: class `%s' has zero prior\n",
cdoc->filename);
assert (cdoc->prior >= 0.0 && cdoc->prior <= 1.0);
}
}
rainbow_method bow_method_emsimple =
{
"emsimple",
NULL, /* no weight setting function */
NULL, /* no weight scaling function */
NULL, /* no weight normalizing function, */
bow_emsimple_new_vpc_with_weights,
bow_emsimple_set_priors_using_class_probs,
bow_nbsimple_score,
bow_wv_set_weights_to_count,
NULL, /* no word vector weight normalization */
bow_barrel_free,
NULL /* no parameters */
};
void _register_method_emsimple () __attribute__ ((constructor));
void _register_method_emsimple ()
{
static int done = 0;
if (done)
return;
bow_method_register_with_name ((bow_method*)&bow_method_emsimple,
"emsimple",
sizeof (rainbow_method),
&emsimple_argp_child);
bow_argp_add_child (&emsimple_argp_child);
done = 1;
}
|