1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
|
/* Functions to calculate the information gain for each word in our corpus. */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Sean Slattery <slttery@cs.cmu.edu>
and Andrew Kachites McCallum <mccallum@cs.cmu.edu>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#include <math.h>
#if !HAVE_LOG2F
#define log2f log
#endif
/* Return the entropy given counts for each type of element. */
double
bow_entropy (float *counts, int num_counts)
{
double total = 0; /* How many elements we have in total */
double entropy = 0.0;
double fraction;
int i;
/* First total the array. */
for (i = 0; i < num_counts; i++)
total += counts[i];
/* If we have no elements, then the entropy is zero. */
if (total == 0) {
return 0.0;
}
/* Now calculate the entropy */
for (i = 0; i < num_counts; i++)
{
if (counts[i] != 0)
{
fraction = counts[i] / total;
entropy -= fraction * log2f (fraction);
}
}
return entropy;
}
/* Return a malloc()'ed array containing an infomation-gain score for
each word index. */
float *
bow_infogain_per_wi_new_document_event (bow_barrel *barrel, int num_classes,
int *size)
{
float grand_totals[num_classes]; /* Totals for each class. */
float with_word[num_classes]; /* Totals for the set of model docs
with this word. */
float without_word[num_classes]; /* Totals for the set of model docs
without this word. */
int max_wi; /* the highest "word index" in WI2DVF. */
bow_cdoc *doc; /* The working cdoc. */
double total_entropy; /* The entropy of the total collection. */
double with_word_entropy; /* The entropy of the set of docs with
the word in question. */
double without_word_entropy; /* The entropy of the set of docs without
the word in question. */
float grand_total = 0;
float with_word_total = 0;
float without_word_total = 0;
int i, j, wi, di;
bow_dv *dv;
float *ret;
bow_verbosify (bow_progress,
"Calculating info gain... words :: ");
max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
*size = max_wi;
ret = bow_malloc (max_wi * sizeof (float));
/* First set all the arrays to zero */
for(i = 0; i < num_classes; i++)
{
grand_totals[i] = 0;
with_word[i] = 0;
without_word[i] = 0;
}
/* Now set up the grand totals. */
for (i = 0; i < barrel->cdocs->length ; i++)
{
doc = bow_cdocs_di2doc (barrel->cdocs, i);
if (doc->type == bow_doc_train)
{
grand_totals[doc->class] += doc->prior;
grand_total += doc->prior;
}
}
/* Calculate the total entropy */
total_entropy = bow_entropy (grand_totals, num_classes);
/* Now loop over all words. */
for (wi = 0; wi < max_wi; wi++)
{
/* Get this document vector */
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
{
ret[wi] = 0;
continue;
}
with_word_total = 0;
/* Create totals for this dv. */
for (j = 0; j < dv->length; j++)
{
di = dv->entry[j].di;
doc = bow_cdocs_di2doc (barrel->cdocs, di);
if (doc->type == bow_doc_train)
{
with_word[doc->class] += doc->prior;
with_word_total += doc->prior;
}
}
/* Create without word totals. */
for (j = 0; j < num_classes; j++)
{
without_word[j] = grand_totals[j] - with_word[j];
}
without_word_total = grand_total - with_word_total;
/* Calculate entropies */
with_word_entropy = bow_entropy(with_word, num_classes);
without_word_entropy = bow_entropy(without_word, num_classes);
/* Calculate and store the information gain. */
ret[wi] = (total_entropy
- ((((double)with_word_total / (double)grand_total)
* with_word_entropy)
+ (((double)without_word_total / (double)grand_total)
* without_word_entropy)));
/* Not comparing with 0 here because of round-off error. */
assert (ret[wi] >= -1e-7);
if (ret[wi] < 0)
ret[wi] = 0;
/* Reset arrays to zero */
for(i = 0; i < num_classes; i++)
{
with_word[i] = 0;
without_word[i] = 0;
}
if (wi % 100 == 0)
bow_verbosify (bow_progress,
"\b\b\b\b\b\b\b\b\b%9d", max_wi - wi);
}
bow_verbosify (bow_progress, "\n");
return ret;
}
/* Return a malloc()'ed array containing an infomation-gain score for
each word index. */
float *
bow_infogain_per_wi_new_word_event (bow_barrel *barrel, int num_classes,
int *size)
{
float grand_totals[num_classes]; /* Totals for each class. */
float with_word[num_classes]; /* Totals for the set of model docs
with this word. */
float without_word[num_classes]; /* Totals for the set of model docs
without this word. */
int max_wi; /* the highest "word index" in WI2DVF. */
bow_cdoc *doc; /* The working cdoc. */
double total_entropy; /* The entropy of the total collection. */
double with_word_entropy; /* The entropy of the set of docs with
the word in question. */
double without_word_entropy; /* The entropy of the set of docs without
the word in question. */
float grand_total;
float with_word_total = 0;
float without_word_total = 0;
int i, j, wi, di;
bow_dv *dv;
float *ret;
bow_verbosify (bow_progress,
"Calculating info gain... words :: ");
max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
*size = max_wi;
ret = bow_malloc (max_wi * sizeof (float));
/* First set the arrays to zero */
for(i = 0; i < num_classes; i++)
grand_totals[i] = 0;
grand_total = 0;
/* Now set up the grand totals. */
for (wi = 0; wi < max_wi; wi++)
{
/* Get this document vector */
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
for (j = 0; j < dv->length; j++)
{
di = dv->entry[j].di;
doc = bow_array_entry_at_index (barrel->cdocs, di);
if (doc->type == bow_doc_train)
{
grand_totals[doc->class] += dv->entry[j].count;
grand_total += dv->entry[j].count;
}
}
}
/* Calculate the total entropy */
total_entropy = bow_entropy (grand_totals, num_classes);
/* Now calculate the information gain of each word. */
for (wi = 0; wi < max_wi; wi++)
{
/* Get this document vector */
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
{
ret[wi] = 0;
continue;
}
/* Reset arrays to zero */
for(i = 0; i < num_classes; i++)
{
with_word[i] = 0;
without_word[i] = 0;
}
with_word_total = 0;
/* Create totals for this dv. */
for (j = 0; j < dv->length; j++)
{
di = dv->entry[j].di;
doc = bow_cdocs_di2doc (barrel->cdocs, di);
if (doc->type == bow_doc_train)
{
with_word[doc->class] += dv->entry[j].count;
with_word_total += dv->entry[j].count;
}
}
/* Create without word totals. */
for (j = 0; j < num_classes; j++)
{
without_word[j] = grand_totals[j] - with_word[j];
}
without_word_total = grand_total - with_word_total;
/* Calculate entropies */
with_word_entropy = bow_entropy(with_word, num_classes);
without_word_entropy = bow_entropy(without_word, num_classes);
/* Calculate and store the information gain. */
ret[wi] = (total_entropy
- ((((double)with_word_total / (double)grand_total)
* with_word_entropy)
+ (((double)without_word_total / (double)grand_total)
* without_word_entropy)));
/* Not comparing with 0 here because of round-off error. */
assert (ret[wi] >= -1e-7);
if (ret[wi] < 0)
ret[wi] = 0;
if (wi % 100 == 0)
bow_verbosify (bow_progress,
"\b\b\b\b\b\b\b\b\b%9d", max_wi - wi);
}
bow_verbosify (bow_progress, "\n");
return ret;
}
float *
bow_infogain_per_wi_new (bow_barrel *barrel, int num_classes, int *size)
{
if (bow_infogain_event_model == bow_event_word)
return bow_infogain_per_wi_new_word_event (barrel, num_classes, size);
else if (bow_infogain_event_model == bow_event_document)
return bow_infogain_per_wi_new_document_event (barrel, num_classes, size);
else if (bow_infogain_event_model == bow_event_document_then_word)
bow_error ("document_then_word for infogain not implemented");
else
bow_error ("bad bow_infogain_event_model");
return NULL;
}
/* Return a malloc()'ed array containing an infomation-gain score for
each word index, but the infogain scores are computing from
co-occurance of word pairs. */
float *
bow_infogain_per_wi_new_using_pairs (bow_barrel *barrel, int num_classes,
int *size)
{
/* `count' == Counts of documents.
`pair'== Pair of words. */
float count[num_classes];
float count_with_pair[num_classes];
float count_without_pair[num_classes];
bow_cdoc *doc1, *doc2;
double entropy_unconditional;
double entropy_with_pair;
double entropy_without_pair;
int max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
float count_total = 0;
float count_with_pair_total = 0;
float count_without_pair_total = 0;
int i, j, wi1, wi2, dvi1, dvi2;
bow_dv *dv1, *dv2;
#if 0
struct _igpair {
float ig;
int wi1;
int wi2;
} igpair[max_wi*max_wi];
#else
float ig;
#endif
bow_verbosify (bow_progress,
"Calculating info gain... words :: ");
*size = max_wi;
/* First set all the arrays to zero */
for(i = 0; i < num_classes; i++)
{
count[i] = 0;
count_with_pair[i] = 0;
count_without_pair[i] = 0;
}
/* Now set up the unconditional counts totals. */
for (i = 0; i < barrel->cdocs->length ; i++)
{
doc1 = bow_cdocs_di2doc (barrel->cdocs, i);
if (doc1->type == bow_doc_train)
{
count[doc1->class] += doc1->prior;
count_total += doc1->prior;
}
}
/* Calculate the unconditional entropy */
entropy_unconditional = bow_entropy (count, num_classes);
/* Now loop over all pairs of words. */
for (wi1 = 0; wi1 < max_wi; wi1++)
{
for (wi2 = wi1+1; wi2 < max_wi; wi2++)
{
/* Get the document vectors */
dv1 = bow_wi2dvf_dv (barrel->wi2dvf, wi1);
dv2 = bow_wi2dvf_dv (barrel->wi2dvf, wi2);
if (dv1 == NULL || dv2 == NULL)
{
/* igpair[wi1][wi2] = 0; */
continue;
}
count_with_pair_total = 0;
/* Create totals for this pair of dv's.
...i.e. find documents in which both WI1 and WI2 occur. */
for (dvi1 = 0, dvi2 = 0; dvi1 < dv1->length; dvi1++)
{
/* Find the entry in DV2 for the same document, if it exists. */
while (dv1->entry[dvi1].di > dv2->entry[dvi2].di
&& dvi2 < dv2->length)
dvi2++;
if (dv1->entry[dvi1].di != dv2->entry[dvi2].di)
continue;
doc1 = bow_cdocs_di2doc (barrel->cdocs, dv1->entry[dvi1].di);
doc2 = bow_cdocs_di2doc (barrel->cdocs, dv2->entry[dvi2].di);
/* We found a document with both WI1 and WI2 */
if (doc1->type == bow_doc_train && doc2->type == bow_doc_train)
{
count_with_pair[doc1->class] += doc1->prior;
count_with_pair_total += doc1->prior;
}
}
/* Set the without-pair totals. */
for (j = 0; j < num_classes; j++)
{
count_without_pair[j] = count[j] - count_with_pair[j];
}
count_without_pair_total = count_total - count_with_pair_total;
/* Calculate entropies */
entropy_with_pair = bow_entropy (count_with_pair, num_classes);
entropy_without_pair = bow_entropy (count_without_pair, num_classes);
/* Calculate and store the information gain. */
ig =
(entropy_unconditional
- ((((double)count_with_pair_total / count_total)
* entropy_with_pair)
+ (((double)count_without_pair_total / count_total)
* entropy_without_pair)));
/* Not comparing with 0 here because of round-off error. */
assert (ig >= -1e-7);
if (ig < 0)
ig = 0;
if (ig > 0.01)
printf ("%12.9f %20s %20s\n",
ig, bow_int2word (wi1), bow_int2word (wi2));
/* Reset arrays to zero */
for(i = 0; i < num_classes; i++)
{
count_with_pair[i] = 0;
count_without_pair[i] = 0;
}
}
if (wi1 % 100 == 0)
bow_verbosify (bow_progress,
"\b\b\b\b\b\b\b\b\b%9d", max_wi - wi1);
}
bow_verbosify (bow_progress, "\n");
#if 0
/* Now loop over all pairs of words, printing the result. */
for (wi1 = 0; wi1 < max_wi; wi1++)
for (wi2 = 0; wi2 < max_wi; wi2++)
{
printf ("%8.5f %20s %20s\n",
igpair[wi1][wi2],
bow_int2word (wi1),
bow_int2word (wi2));
}
#endif
return NULL;
}
/* Return a word array containing information gain scores, unsorted.
Only includes words with non-zero infogain. */
bow_wa *
bow_infogain_wa (bow_barrel *barrel, int num_classes)
{
float *wi2ig; /* the array of information gains */
int wi2ig_size;
int wi;
bow_wa *wa = bow_wa_new (barrel->wi2dvf->num_words);
wi2ig = bow_infogain_per_wi_new (barrel, num_classes, &wi2ig_size);
/* Create and fill and array of `word-index and information-gain
structures' that can be sorted. */
for (wi = 0; wi < wi2ig_size; wi++)
if (wi2ig[wi] > 0)
bow_wa_append (wa, wi, wi2ig[wi]);
return wa;
}
/* Return a word array containing the count for each word, with +/-
0.1 noise added. */
bow_wa *
bow_word_count_wa (bow_barrel *doc_barrel)
{
bow_wa *wa;
int wi, dvi;
bow_dv *dv;
bow_cdoc *cdoc;
wa = bow_wa_new (0);
for (wi = 0; wi < doc_barrel->wi2dvf->size; wi++)
{
dv = bow_wi2dvf_dv (doc_barrel->wi2dvf, wi);
if (!dv)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_array_entry_at_index (doc_barrel->cdocs,
dv->entry[dvi].di);
if (cdoc->type == bow_doc_train)
bow_wa_add_to_end (wa, wi,
dv->entry[dvi].count + bow_random_01 () * 0.01);
}
}
return wa;
}
/* Print to stdout the sorted results of bow_infogain_per_wi_new().
It will print the NUM_TO_PRINT words with the highest infogain. */
void
bow_infogain_per_wi_print (FILE *fp, bow_barrel *barrel, int num_classes,
int num_to_print)
{
float *wi2ig; /* the array of information gains */
int wi2ig_size;
int wi, i;
struct wiig { int wi; float ig; } *wiigs;
int wiig_compare (const void *wiig1, const void *wiig2)
{
if (((struct wiig*)wiig1)->ig > ((struct wiig*)wiig2)->ig)
return -1;
else if (((struct wiig*)wiig1)->ig == ((struct wiig*)wiig2)->ig)
return 0;
else
return 1;
}
wi2ig = bow_infogain_per_wi_new (barrel, num_classes, &wi2ig_size);
if (num_to_print == 0)
num_to_print = wi2ig_size;
/* Create and fill and array of `word-index and information-gain
structures' that can be sorted. */
wiigs = bow_malloc (wi2ig_size * sizeof (struct wiig));
for (wi = 0; wi < wi2ig_size; wi++)
{
wiigs[wi].wi = wi;
wiigs[wi].ig = wi2ig[wi];
}
/* Sort it. */
qsort (wiigs, wi2ig_size, sizeof (struct wiig), wiig_compare);
/* Print it. */
for (i = 0; i < num_to_print; i++)
{
fprintf (fp, "%8.5f %s\n", wiigs[i].ig, bow_int2word (wiigs[i].wi));
}
bow_free (wi2ig);
}
|