1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
/* Weight-setting and scoring for Kuback-Leiber classification */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Andrew Kachites McCallum <mccallum@cs.cmu.edu>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#include <math.h>
/* For changing weight of unseen words.
I really should implement `deleted interpolation' */
/* M_EST_P summed over all words in the vocabulary must sum to 1.0! */
#if 1
/* This is the special case of the M-estimate that is `Laplace smoothing' */
#define M_EST_M (barrel->wi2dvf->num_words)
#define M_EST_P (1.0 / barrel->wi2dvf->num_words)
#define WORD_PRIOR_COUNT 1.0
#else
#define M_EST_M (cdoc->word_count \
? (((float)barrel->wi2dvf->num_words) / cdoc->word_count) \
: 1.0)
#define M_EST_P (1.0 / barrel->wi2dvf->num_words)
#endif
/* Function to assign `Naive Bayes'-style weights to each element of
each document vector. */
void
bow_kl_set_weights (bow_barrel *barrel)
{
int ci;
bow_cdoc *cdoc;
int wi; /* a "word index" into WI2DVF */
int max_wi; /* the highest "word index" in WI2DVF. */
bow_dv *dv; /* the "document vector" at index WI */
int dvi; /* an index into the DV */
int weight_setting_num_words = 0;
int total_num_words = 0;
/* We assume that we have already called BOW_BARREL_NEW_VPC() on
BARREL, so BARREL already has one-document-per-class. */
assert (!strcmp (barrel->method->name, "kl"));
max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
/* Get the total number of terms in each class; store this in
CDOC->WORD_COUNT. */
/* Get the total number of unique terms in each class; store this in
CDOC->NORMALIZER. */
/* Calculate the total number of occurrences of each word; store this
in DV->IDF. */
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs, ci);
cdoc->word_count = 0;
cdoc->normalizer = 0;
}
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
dv->idf = 0;
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs,
dv->entry[dvi].di);
cdoc->word_count += dv->entry[dvi].count;
total_num_words += dv->entry[dvi].count;
dv->idf += dv->entry[dvi].count;
cdoc->normalizer++;
}
}
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
float pr_w_c;
cdoc = bow_array_entry_at_index (barrel->cdocs,
dv->entry[dvi].di);
pr_w_c = (float)dv->entry[dvi].count / cdoc->word_count;
}
}
/* Set the weights in the BARREL's WI2DVF so that they are
equal to the log likelihood-ratio, Pr(w|C)/Pr(w|~C). */
for (wi = 0; wi < max_wi; wi++)
{
double pr_w = 0.0;
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
/* If the model doesn't know about this word, skip it. */
if (dv == NULL)
continue;
pr_w = ((double)dv->idf) / total_num_words;
/* Now loop through all the elements, setting their weights */
for (dvi = 0; dvi < dv->length; dvi++)
{
double pr_w_c;
double pr_w_not_c;
double log_likelihood_ratio;
cdoc = bow_array_entry_at_index (barrel->cdocs,
dv->entry[dvi].di);
/* Here CDOC->WORD_COUNT is the total number of words in the class */
/* We use Laplace Estimation. */
pr_w_c = ((double)dv->entry[dvi].count
/ (cdoc->word_count + cdoc->normalizer));
pr_w_c = (((double)dv->entry[dvi].count + 1)
/ (cdoc->word_count + barrel->wi2dvf->num_words));
pr_w_not_c = ((dv->idf - dv->entry[dvi].count
+ barrel->cdocs->length - 1)
/
(total_num_words - cdoc->word_count
+ (barrel->wi2dvf->num_words
* (barrel->cdocs->length - 1))));
log_likelihood_ratio = log (pr_w_c / pr_w_not_c);
dv->entry[dvi].weight = log_likelihood_ratio;
dv->entry[dvi].weight = pr_w_c * log_likelihood_ratio;
}
weight_setting_num_words++;
/* Set the IDF. Kl doesn't use it; make it have no effect */
dv->idf = 1.0;
}
#if 0
fprintf (stderr, "wi2dvf num_words %d, weight-setting num_words %d\n",
barrel->wi2dvf->num_words, weight_setting_num_words);
#endif
}
int
bow_kl_score (bow_barrel *barrel, bow_wv *query_wv,
bow_score *bscores, int bscores_len,
int loo_class)
{
double *scores; /* will become prob(class), indexed over CI */
int ci; /* a "class index" (document index) */
int wvi; /* an index into the entries of QUERY_WV. */
int dvi; /* an index into a "document vector" */
float pr_w_c; /* P(w|C), prob a word is in a class */
int num_scores; /* number of entries placed in SCORES */
int query_word_count;
double score_increment = 0;
double pr_w_d;
#define KL_AGAINST_UNCOND 0
#if KL_AGAINST_UNCOND
int total_num_words = 0; /* number of word occurrences in all classes */
int total_num_w = 0; /* number of WI occurrences in all classes */
double pr_w; /* unconditional probability of WI. */
#endif
int count_w_c;
int count_c;
int num_smoothes = 0;
double entropy_d = 0;
/* Allocate space to store scores for *all* classes (documents) */
scores = alloca (barrel->cdocs->length * sizeof (double));
/* Calculate the total number of words in QUERY_WV. Should we start
at one to prevent getting a zero here? Also, would this be
statistically more correct, too? */
query_word_count = 0;
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
{
/* Only count those words that are in the model's vocabulary. */
if (bow_wi2dvf_dv (barrel->wi2dvf, query_wv->entry[wvi].wi))
query_word_count += query_wv->entry[wvi].count;
}
if (query_word_count == 0)
query_word_count = 1;
#if KL_AGAINST_UNCOND
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
bow_cdoc *cdoc = bow_array_entry_at_index (barrel->cdocs, ci);
assert (cdoc->type == model);
total_num_words += cdoc->word_count;
}
#endif
/* Initialize the SCORES to the class prior probabilities. */
if (bow_print_word_scores)
printf ("%s\n",
"(CLASS PRIOR PROBABILIES)");
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
bow_cdoc *cdoc = bow_array_entry_at_index (barrel->cdocs, ci);
if (bow_uniform_class_priors)
{
scores[ci] = 0.0;
}
else
{
/* assert (cdoc->prior > 0 && cdoc->prior <= 1.0); */
assert (cdoc->prior >= 0 && cdoc->prior <= 1.0);
if (cdoc->word_count == 0)
/* There was no training data for this class. Give it a
special, impossible value. Positive scores are treated
as a special case that can never win. */
scores[ci] = 999.0;
else
scores[ci] = log (cdoc->prior) / query_word_count;
}
}
/* Loop over each word in the word vector QUERY_WV, putting its
contribution into SCORES. */
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
{
int wi; /* the word index for the word at WVI */
bow_dv *dv; /* the "document vector" for the word WI */
/* Get information about this word. */
wi = query_wv->entry[wvi].wi;
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
/* If the model doesn't know about this word, skip it. OOV */
if (!dv)
continue;
if (bow_print_word_scores)
printf ("%-30s (queryweight=%.8f)\n",
bow_int2word (wi),
query_wv->entry[wvi].weight * query_wv->normalizer);
pr_w_d = (float)query_wv->entry[wvi].count / query_word_count;
/* pr_w_d = 1.0 / query_wv->num_entries; xxx !!! */
entropy_d += pr_w_d * log (pr_w_d);
#if KL_AGAINST_UNCOND
/* Calculate the unconditional probability of word WI. */
for (dvi = 0; dvi < dv->length; dvi++)
total_num_w += dv->entry[dvi].count;
pr_w =
(((float)total_num_w + M_EST_M * M_EST_P * barrel->cdocs->length)
/ (total_num_words + M_EST_M * barrel->cdocs->length));
#endif
/* Loop over all classes, putting this word's (WI's)
contribution into SCORES. */
for (ci = 0, dvi = 0; ci < barrel->cdocs->length; ci++)
{
bow_cdoc *cdoc;
cdoc = bow_array_entry_at_index (barrel->cdocs, ci);
assert (cdoc->type == bow_doc_train);
if (cdoc->word_count == 0)
{
assert (scores[ci] > 0);
/* xxx Why isn't this true? assert (cdoc->prior == 0); */
continue;
}
/* Assign PR_W_C to P(w|C), either using a DV entry, or, if
there is no DV entry for this class, using M-estimate
smoothing */
if (dv)
while (dvi < dv->length && dv->entry[dvi].di < ci)
dvi++;
if (dv && dvi < dv->length && dv->entry[dvi].di == ci)
{
/* The count for this word in this class is non-zero. */
if (loo_class == ci)
{
/* xxx This is not exactly right, because
BARREL->WI2DVF->NUM_WORDS might have changed with the
removal of QUERY_WV's document. */
pr_w_c = ((float)
((M_EST_M * M_EST_P) + dv->entry[dvi].count
- query_wv->entry[wvi].count)
/ (M_EST_M + cdoc->word_count
- query_word_count));
if (pr_w_c <= 0)
bow_error ("A negative word probability was calculated.\n"
"This can happen if you are using "
"--test-files-loo and the test files are\n"
"not being lexed in the same way as they "
"were when the model was built.\n"
"Value is %f\n"
"Word is `%s'\n", pr_w_c, bow_int2word (wi));
count_w_c = dv->entry[dvi].count-query_wv->entry[wvi].count;
count_c = cdoc->word_count - query_wv->entry[wvi].count;
}
else
{
pr_w_c = ((float)
((M_EST_M * M_EST_P) + dv->entry[dvi].count)
/ (M_EST_M + cdoc->word_count));
if (pr_w_c <= 0)
bow_error ("A negative word probability was calculated. "
"This can happen if you are using\n"
"--test-files-loo and the test files are "
"not being lexed in the same way as they\n"
"were when the model was built.");
assert (pr_w_c > 0 && pr_w_c <= 1);
count_w_c = dv->entry[dvi].count;
count_c = cdoc->word_count;
if (bow_smoothing_method == bow_smoothing_wittenbell)
{
pr_w_c = ((float)dv->entry[dvi].count
/ (cdoc->word_count + cdoc->normalizer));
}
}
}
else
{
/* The count for this word in this class is zero. */
num_smoothes++;
if (loo_class == ci)
{
/* xxx This is not exactly right, because
BARREL->WI2DVF->NUM_WORDS might have changed with the
removal of QUERY_WV's document. */
pr_w_c = ((M_EST_M * M_EST_P)
/ (M_EST_M + cdoc->word_count
- query_word_count));
assert (pr_w_c > 0 && pr_w_c <= 1);
count_w_c = 0;
count_c = cdoc->word_count - query_wv->entry[wvi].count;
}
else
{
pr_w_c = ((M_EST_M * M_EST_P)
/ (M_EST_M + cdoc->word_count));
assert (pr_w_c > 0 && pr_w_c <= 1);
count_w_c = 0;
count_c = cdoc->word_count;
if (bow_smoothing_method == bow_smoothing_wittenbell)
{
if (cdoc->word_count)
/* There is training data for this class */
pr_w_c =
(cdoc->normalizer
/ ((cdoc->word_count + cdoc->normalizer)
*(barrel->wi2dvf->num_words-cdoc->normalizer)));
else
/* There is no training data for this class. */
pr_w_c = 1.0 / barrel->wi2dvf->num_words;
}
}
}
assert (pr_w_c > 0 && pr_w_c <= 1);
#if KL_AGAINST_UNCOND
/* score_increment = pr_w_d * log (pr_w_c / (pr_w)); */
score_increment = pr_w_d * log (pr_w_c / (pr_w * pr_w_d));
#else
/* score_increment = pr_w_d * log (pr_w_c); */
score_increment = pr_w_d * log (pr_w_c / pr_w_d);
#endif
assert (score_increment == score_increment);
scores[ci] += score_increment;
assert (scores[ci] == scores[ci]);
if (bow_print_word_scores)
printf (" %5d/%-6d %8.2e %7.4f %-25s %8.5f\n",
count_w_c,
count_c,
pr_w_c,
score_increment,
(strrchr (cdoc->filename, '/') ? : cdoc->filename),
scores[ci]);
}
}
/* Now SCORES[] contains a KL divergence for each class. */
#if 1
/* Normalize the SCORES so they all sum to minus one. */
{
double scores_sum = 0;
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
if (scores[ci] <= 0)
scores_sum += scores[ci];
}
if (scores_sum)
{
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
if (scores[ci] > 0)
scores[ci] = -FLT_MAX;
else
scores[ci] /= -scores_sum;
assert (scores[ci] == scores[ci]);
/* assert (scores[ci] > 0); */
}
}
else
{
for (ci = 0; ci < barrel->cdocs->length; ci++)
scores[ci] = -1.0 / barrel->cdocs->length;
}
}
#endif
/* Return the SCORES by putting them (and the `class indices') into
SCORES in sorted order. */
{
num_scores = 0;
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
if (num_scores < bscores_len
|| bscores[num_scores-1].weight < scores[ci])
{
/* We are going to put this score and CI into SCORES
because either: (1) there is empty space in SCORES, or
(2) SCORES[CI] is larger than the smallest score there
currently. */
int dsi; /* an index into SCORES */
if (num_scores < bscores_len)
num_scores++;
dsi = num_scores - 1;
/* Shift down all the entries that are smaller than SCORES[CI] */
for (; dsi > 0 && bscores[dsi-1].weight < scores[ci]; dsi--)
bscores[dsi] = bscores[dsi-1];
/* Insert the new score */
bscores[dsi].weight = scores[ci];
bscores[dsi].di = ci;
}
}
}
#if 0
printf ("kl %8.6f %8.6f %d %d %8.6f %8.6f ",
-bscores[0].weight * scores_sum, /* unnormalized high score */
bscores[0].weight, /* normalized high score */
query_word_count, /* document length */
query_wv->num_entries, /* num unique words in query */
(float)num_smoothes/query_word_count,
entropy_d);
#endif
return num_scores;
}
rainbow_method bow_method_kl =
{
"kl",
bow_kl_set_weights,
0, /* no weight scaling function */
NULL, /* bow_barrel_normalize_weights_by_summing, */
bow_barrel_new_vpc_merge_then_weight,
bow_barrel_set_vpc_priors_by_counting,
bow_kl_score,
bow_wv_set_weights_to_count,
NULL, /* no need for extra weight normalization */
bow_barrel_free,
0
};
void _register_method_kl () __attribute__ ((constructor));
void _register_method_kl ()
{
static int done = 0;
if (done)
return;
bow_method_register_with_name ((bow_method*)&bow_method_kl, "kl",
sizeof (rainbow_method),
NULL);
done = 1;
}
|