1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
/* Weight-setting and scoring implementation for Naive-Bayes classification */
/* Copyright (C) 1997, 1998, 1999 Andrew McCallum
Written by: Andrew Kachites McCallum <mccallum@cs.cmu.edu>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#include <math.h>
#include <argp/argp.h>
/*
My reading of the SMART documentation and code makes me think that the
various tf weight options - particularly 'l' and 'a' apply only to
words that occur in the document in question - which avoids any taking
the log of 0.
If you want to check this, look at the table at
http://pi0959.kub.nl:2080/Paai/Onderw/Smart/examp_10.html
(Linked to by the Advanced actions part of the SMART tutorial at
http://pi0959.kub.nl:2080/Paai/Onderw/Smart/hands-on-tekst.html#advanced)
and also look at the tfwt_log function in the SMART source tree at
src/libconvert/weights_tf.c.
The weighting options implemented here are:
Position 1 - TF. If f == 0 then TF == 0. Otherwise, for f > 0
'n' - none - f
'b' - binary - 1
'm' - max-norm - f / (max f in doc)
'a' - aug-norm - 0.5 + 0.5 * (f / (max f in doc))
'l' - log - 1.0 + ln(f)
Position 2 - IDF.
'n' - none - 1.0
't' - tfidf - ln (total docs / docs containing term)
Position 3 - NORM
'n' - none - 1.0
'c' - cosine - 1 / sqrt (sum (tf * idf)**2)
*/
/* Command-line options specific to kNN */
/* Default value for option "knn_k", the number of neighbours to look
at. */
static int knn_k = 30;
/* Default values for the weighting schemes */
static char query_weights[4] = "nnn";
static char doc_weights[4] = "nnn";
/* The integer or single char used to represent this command-line option.
Make sure it is unique across all libbow and rainbow. */
#define KNN_K_KEY 4001
#define KNN_WEIGHTING_KEY 4002
static struct argp_option knn_options[] =
{
{0,0,0,0,
"K-nearest neighbor options, --method=knn:", 40},
{"knn-k", KNN_K_KEY, "K", 0,
"Number of neighbours to use for nearest neighbour. Defaults to "
"30."},
{"knn-weighting", KNN_WEIGHTING_KEY, "xxx.xxx", 0,
"Weighting scheme to use, coded like SMART. Defaults to nnn.nnn"
"The first three chars describe how the model documents are"
"weighted, the second three describe how the test document is"
"weighted. The codes for each position are described in knn.c."
"Classification consists of summing the scores per class for the"
"k nearest neighbour documents and sorting."
},
{0, 0}
};
error_t
knn_parse_opt (int key, char *arg, struct argp_state *state)
{
switch (key)
{
case KNN_K_KEY:
knn_k = atoi (arg);
break;
case KNN_WEIGHTING_KEY:
/* Arg is a string that we need to split into two bits */
strncpy(query_weights, arg, 3);
strncpy(doc_weights, arg + 4, 3);
break;
default:
return ARGP_ERR_UNKNOWN;
}
return 0;
}
static const struct argp knn_argp =
{
knn_options,
knn_parse_opt
};
static struct argp_child knn_argp_child =
{
&knn_argp, /* This child's argp structure */
0, /* flags for child */
0, /* optional header in help message */
0 /* arbitrary group number for ordering */
};
/* End of command-line options specific to kNN */
/* Some useful macros */
#define TF_M(x) ((x)[0] == 'm')
#define TF_B(x) ((x)[0] == 'b')
#define TF_A(x) ((x)[0] == 'a')
#define TF_L(x) ((x)[0] == 'l')
#define TF_N(x) ((x)[0] == 'n')
#define IDF_T(x) ((x)[1] == 't')
#define NORM_C(x) ((x)[2] == 'c')
/* Function to assign tfidf weights to every word in the barrel
according to the contents of doc_weights */
void
bow_knn_set_weights (bow_barrel *barrel)
{
int di;
bow_cdoc *cdoc;
int wi; /* a "word index" into WI2DVF */
int max_wi; /* the highest "word index" in WI2DVF. */
bow_dv *dv; /* the "document vector" at index WI */
int dvi; /* an index into the DV */
int num_docs, total_model_docs;
/* We assume we are dealing with the full document barrel - no
whimpy vector-per-class stuff here. */
assert (!strcmp (barrel->method->name, "knn"));
max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
/* Step one calculate the number of documents in the model. We'll
use this for the idf calculation later on. Also, reset each
document's word_count - we're going to use this to store the max
tf in the document which is needed by some of the tf weighting
methods. */
total_model_docs = 0;
for (di = 0; di < barrel->cdocs->length; di++)
{
cdoc = bow_cdocs_di2doc(barrel->cdocs, di);
if (cdoc->type == bow_doc_train)
{
total_model_docs++;
cdoc->word_count = 0;
}
}
/* Step two - we can calculate weights for the b, l and n weighting
schemes now. For a we can calculate the max tf in each
document. We can also calculate the idf term and store it. */
for (wi = 0; wi < max_wi; wi++)
{
/* Count the number of model docs this word occurs in */
num_docs = 0;
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_cdocs_di2doc(barrel->cdocs, dv->entry[dvi].di);
if (cdoc->type == bow_doc_train)
{
num_docs++;
/* Set some weights */
if (TF_B(doc_weights))
{
/* Binary counts */
dv->entry[dvi].weight = 1;
}
else if (TF_L(doc_weights))
{
/* 1 + ln(tf) */
dv->entry[dvi].weight = 1 + log(dv->entry[dvi].count);
}
else if (TF_N(doc_weights))
{
/* tf */
dv->entry[dvi].weight = dv->entry[dvi].count;
}
else
{
/* Update the max tf count */
if (cdoc->word_count < dv->entry[dvi].count)
{
cdoc->word_count = dv->entry[dvi].count;
}
}
}
}
/* Set up the IDF for this word */
dv->idf = log((double)total_model_docs / (double)num_docs);
}
/* Final Step - calculate weights for methods that use max tf
stuff. Also multiply in the IDF terms. */
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_cdocs_di2doc(barrel->cdocs, dv->entry[dvi].di);
if (cdoc->type == bow_doc_train)
{
if (TF_A(doc_weights))
{
/* 0.5 + 0.5 * (tf / max_tf_in_doc) */
dv->entry[dvi].weight = 0.5 + 0.5 * ((double)dv->entry[dvi].count / (double)cdoc->word_count);
}
else if (TF_M(doc_weights))
{
/* tf / max_tf_in_doc */
dv->entry[dvi].weight = (double)dv->entry[dvi].count / (double)cdoc->word_count;
}
/* Do the IDF */
if (IDF_T(doc_weights))
dv->entry[dvi].weight *= dv->idf;
}
}
}
/* Now our barrel has the tf*idf weight for each term in each
document in our model */
}
void bow_knn_normalise_weights (bow_barrel *barrel)
{
/* This puts the euclidian doc length in cdoc->normalizer for each
document in the model. */
if (NORM_C(doc_weights))
{
bow_barrel_normalize_weights_by_vector_length(barrel);
}
}
bow_barrel *
bow_knn_classification_barrel (bow_barrel *barrel)
{
/* Just use the doc barrel - set the weights, normalise and return. */
bow_knn_set_weights(barrel);
bow_knn_normalise_weights(barrel);
return barrel;
}
/* Set the weights for the query word vector according to the
weighting scheme in query_weights */
void bow_knn_query_set_weights(bow_wv *query_wv, bow_barrel *barrel)
{
bow_dv *dv;
int wvi, max_tf;
/* null to statement to avoid compilation warning */
barrel = barrel;
/* Pass one - set weights for b,l or n. Figure out the maximum
word frequency of the document. */
max_tf = 0;
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
{
if (TF_B(query_weights))
{
query_wv->entry[wvi].weight = 1;
}
else if (TF_L(query_weights))
{
query_wv->entry[wvi].weight = 1 + log(query_wv->entry[wvi].count);
}
else if (TF_N(query_weights))
{
query_wv->entry[wvi].weight = query_wv->entry[wvi].count;
}
else if (max_tf < query_wv->entry[wvi].count)
{
max_tf = query_wv->entry[wvi].count;
}
}
/* Pass two - Get the correct weights for 'a' or 'm'. Do IDF if
required. */
for(wvi = 0; wvi < query_wv->num_entries; wvi++)
{
if (TF_M(query_weights))
{
query_wv->entry[wvi].weight = (double)query_wv->entry[wvi].count / (double) max_tf;
}
else if (TF_A(query_weights))
{
query_wv->entry[wvi].weight = 0.5 + 0.5 * ((double)query_wv->entry[wvi].count / (double) max_tf);
}
/* Cheat here - we can leverage off the fact that I've so
far only implemented one IDF method. Otherwise I'd have
to store raw statistics for the word occurances for each
word. */
if (IDF_T(query_weights))
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, query_wv->entry[wvi].wi);
query_wv->entry[wvi].weight *= dv->idf;
}
}
/* Done - the idf term was calculated earlier on */
}
void
bow_knn_normalise_query_weights (bow_wv *query)
{
if (NORM_C(query_weights))
{
bow_wv_normalize_weights_by_vector_length(query);
}
}
/* Little :) function lifted from tfidf.c and edited to do exactly
what we need here. Was originally called bow_tfidf_score */
int
bow_knn_get_k_best (bow_barrel *barrel, bow_wv *query_wv,
bow_score *scores, int best)
{
bow_dv_heap *heap;
bow_cdoc *doc;
int num_scores = 0; /* How many elements are in this array */
int current_di, wi, current_index, i;
double current_score = 0.0, doc_tfidf;
float tmp;
/* Create the Heap of vectors of documents */
heap = bow_make_dv_heap_from_wv (barrel->wi2dvf, query_wv);
/* Keep looking at document/word entries until the heap is emptied */
while (heap->length > 0)
{
/* Get the index of the document we're currently working on */
current_di = heap->entry[0].current_di;
/* Get the document structure */
doc = bow_cdocs_di2doc (barrel->cdocs, current_di);
/* If it's not a model document, then move on to next one */
if (doc->type != bow_doc_train)
{
do
{
bow_dv_heap_update (heap);
}
while ((current_di == heap->entry[0].current_di)
&& (heap->length > 0));
/* Try again */
continue;
}
/* Reset the index into the query word vector */
current_index = 0;
/* Reset the score */
current_score = 0.0;
/* Loop over all the words this document has in common with our
query document, summing up the score. We know the words come
out of the heap in index order and we know the words in the
query word vector are in index order as well. */
do
{
wi = heap->entry[0].wi;
doc_tfidf = heap->entry[0].dv->entry[heap->entry[0].index].weight;
/* Find the corresponding word in the query word vector */
/* Note - we know this word is in the query because we built
the heap using only the query words. */
while (wi > (query_wv->entry[current_index].wi))
current_index++;
assert (wi == query_wv->entry[current_index].wi);
/* Now we can add something to the score. Normalisation
happens outside this loop, we just need to check for the
idf factor stuff. The tf weights are just fine. */
/* Multiply the tfidf weights */
/* printf("%f * %f\n", query_wv->entry[current_index].weight,
doc_tfidf); */
tmp = query_wv->entry[current_index].weight * doc_tfidf;
/* Plop this into the current score */
current_score += tmp;
/* A test to make sure we haven't got NaN. */
assert (current_score == current_score);
/* Now we need to update the heap - moving this element on
to its
new position */
bow_dv_heap_update (heap);
}
while ((current_di == heap->entry[0].current_di)
&& (heap->length > 0));
/* Now check for normalisation */
if(NORM_C(query_weights))
{
current_score *= query_wv->normalizer;
}
if(NORM_C(doc_weights))
{
current_score *= doc->normalizer;
}
assert (current_score == current_score); /* checking for NaN */
/* We now hopefully have the correct score for doc */
/* Store the result in the SCORES array */
/* If we haven't filled the list, or we beat the last item in
the list */
if ((num_scores < best)
|| (scores[num_scores - 1].weight < current_score))
{
/* We're going to search up the list comparing element i-1 with
our current score and moving it down the list if it's worse */
if (num_scores < best)
{
i = num_scores;
num_scores++;
}
else
i = num_scores - 1;
/* Shift down all the bits of the array that need shifting */
for (; (i > 0) && (scores[i - 1].weight < current_score); i--)
{
scores[i].di = scores[i-1].di;
scores[i].weight = scores[i-1].weight;
scores[i].name = scores[i-1].name;
}
/* Insert our new score */
scores[i].weight = current_score;
scores[i].di = current_di;
scores[i].name = doc->filename;
}
}
bow_free (heap);
/* All done - return the number of elements we have */
return num_scores;
}
/* Get class scores using closest K neighbors. */
int
bow_knn_score (bow_barrel *barrel, bow_wv *query_wv,
bow_score *bscores, int bscores_len,
int loo_class)
{
int count;
int ni,ci;
double scores_sum = 0.0;
int num_scores;
bow_score *neighbors; /* Place to hold scores of nearest neighbors */
double *scores;
/* This should be initialized in case BSCORES_LEN is larger than the number
* of classes in the barrel */
for (ci=0; ci < bscores_len; ci++)
{
bscores[ci].weight = 0.0;
bscores[ci].di = 0;
bscores[ci].name = "default";
}
/* Get scores of neighbors */
neighbors = alloca (sizeof (bow_score) * knn_k);
count = bow_knn_get_k_best (barrel, query_wv, neighbors, knn_k);
/* Allocate space for class scores */
scores = alloca (bow_barrel_num_classes (barrel) * sizeof (double));
for (ci=0; ci < bow_barrel_num_classes (barrel); ci++)
scores[ci] = 0.0;
/* Put contributing document scores into class scores */
for (ni=0; ni < count; ni++)
{
/* Get the class of this document */
bow_cdoc *doc = bow_cdocs_di2doc (barrel->cdocs, neighbors[ni].di);
scores[doc->class] += neighbors[ni].weight;
scores_sum += neighbors[ni].weight;
}
num_scores = 0;
/* Put SCORES into BSCORES in sorted order */
/* Each round, find the best remainaing score and put it into bscores */
for (ci=0; ci < bow_barrel_num_classes (barrel); ci++)
{
if (num_scores < bscores_len
|| bscores[num_scores-1].weight < scores[ci])
{
int dsi;
/* We are going to put this score and class index into SCORES
* because either 1) there is an empty space in SCORES, or 2)
* SCORES[CI] is larger than the smallest score currently there */
if (num_scores < bscores_len)
num_scores++;
dsi = num_scores - 1;
/* Shift down all the entries that are smaller than SCORES[CI] */
for (; dsi > 0 && bscores[dsi-1].weight < scores[ci]; dsi--)
{
bscores[dsi].weight = bscores[dsi-1].weight;
bscores[dsi].name = bscores[dsi-1].name;
bscores[dsi].di = bscores[dsi-1].di;
}
bscores[dsi].weight = scores[ci];
bscores[dsi].di = ci;
bscores[dsi].name = "default";
}
}
return num_scores;
}
rainbow_method bow_method_knn =
{
"knn",
bow_knn_set_weights,
0, /* no weight scaling function */
bow_knn_normalise_weights,
bow_knn_classification_barrel,
NULL, /* We don't do priors */
bow_knn_score,
bow_knn_query_set_weights,
bow_knn_normalise_query_weights,
bow_barrel_free,
0
};
void _register_method_knn () __attribute__ ((constructor));
void _register_method_knn ()
{
bow_method_register_with_name ((bow_method*)&bow_method_knn, "knn",
sizeof (rainbow_method),
&knn_argp_child);
bow_argp_add_child (&knn_argp_child);
}
|