1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
#!/usr/bin/perl
# The above line is modified by ./Makefile to match the system's
# installed location for Perl.
# Script to process the output from Andrew's rainbow program and produce
# useful summaries of the results. Feed the results intot stdin and
# all the summaries will arrive on stdout
# Memory savings courtesy of Jason :)
# If you pass the `-s' command line argument, print only the accuracy
# average and standard deviation.
# setup some default values
$total_accuracy = 0.0;
# When this is zero, only print accuracy average and std.dev.
$verbosity = 1;
# Prune this regex from the end of classnames.
$prune_from_classname = "";
if ($#ARGV >= 0 && $ARGV[0] eq "-s") {
$verbosity = 0;
shift;
}
if ($#ARGV >= 0 && $ARGV[0] eq "-p") {
$prune_from_classname = $ARGV[1];
printf "Pruning `%s' from classnames\n", $prune_from_classname;
shift; shift;
}
# Read in the first #
$line = <>;
$trial = 0;
while (&read_trial() != 0) {
# OK - Lets start with accuracy
&calculate_accuracy();
# Now, how about a confusion matrix.
&confusion();
$trial++;
}
# Maybe some summary?
# We've had $trial trials
&overall_accuracy();
exit;
# generic sorting function
sub bystring
{
if ($a gt $b) { return 1; }
elsif ($a eq $b) { return 0; }
return -1;
}
# Function to read in the results for one trial into three arrays - @ids,
# @actual_classifications and @predicted_classifications
# What is the English description of these?
# @ids -
# @actual_classifications -
# @predicted_classifications -
sub read_trial {
undef @ids;
undef @actual_classifications;
undef @predicted_classifications;
undef %classes_to_codes;
undef @codes_to_classes;
$num_pages = 0;
$do_sort = 1;
while (($line = <>) && ($line !~ /^\#[0-9]+$/)) {
chop $line;
@line = split(' ', $line);
# Remove the filename from @line and append it to @ids
# push(@ids, shift @line);
shift @line;
$num_pages++;
if (length ($prune_from_classname) > 0) {
# Remove $prune_from_classname from end of the actual classname
#printf ("Before: %s ", $line[0]);
$pruning_regex = sprintf ("^(.+)%s\$", $prune_from_classname);
$line[0] =~ s,$pruning_regex,\1,;
#printf ("After: %s\n", $line[0]);
# Remove $prune_from_classname from end of the predicted classnames
$pruning_regex =
sprintf ("^(.+)%s(:[\.0-9e+\-]+)\$", $prune_from_classname);
for ($i = 1; $i < @line; $i++) {
#printf ("Before: %s ", $line[$i]);
$line[$i] =~ s,$pruning_regex,\1\2,;
#printf ("After: %s\n", $line[$i]);
}
}
# Ensure we have a code for the actual class
if (grep(/^$line[0]$/, @codes_to_classes) == 0) {
$classes_to_codes{$line[0]} = @codes_to_classes;
push(@codes_to_classes, $line[0]);
}
# $pred_class = $line[0];
# $pred_class =~ /^(.+):[\.0-9e+\-]+$/;
# Make sure we have codes for everything
foreach $pred (@line)
{
if ($pred =~ /^(.+):[\.0-9e+\-]+$/)
{
if (grep(/^$1$/, @codes_to_classes) == 0) {
$classes_to_codes{$1} = @codes_to_classes;
push(@codes_to_classes, $1);
}
}
}
# order the classes according to their names
if ($do_sort)
{
@codes_to_classes = sort bystring @codes_to_classes;
for ($i=0; $i < @codes_to_classes; $i++)
{
$classes_to_codes{$codes_to_classes[$i]} = $i;
}
$do_sort = 0;
}
# $act_class = $line[0];
# push(@actual_classifications, shift @line);
### Use integer codes instead of strings
$class_label = shift @line;
$class_id = $classes_to_codes{$class_label};
push(@actual_classifications, $class_id);
# push(@predicted_classifications, [ @line ]);
# push(@predicted_classifications, shift @line);
### Use integer codes instead of strings
$class_tag = shift @line;
$class_tag =~ /^(.+):[\.0-9e+\-]+$/;
$class_label = $1;
$class_id = $classes_to_codes{$class_label};
push(@predicted_classifications, $class_id);
}
# if (@ids > 0) {
if ($num_pages > 0) {
return 1;
} else {
return 0;
}
}
# Function to take the three arrays and calculate the accuracy of the
# run
sub calculate_accuracy {
if ($verbosity > 0) {
print "Trial $trial\n\n";
}
# Initialize the variables in which we'll gather stats
$correct = 0;
$total = 0;
# for ($i = 0; $i < @ids; $i++) {
for ($i = 0; $i < $num_pages; $i++) {
# $predicted_classifications[$i][0] =~ /^(.+):[\.0-9e+\-]+$/;
# $predicted_classifications[$i] =~ /^(.+):[\.0-9e+\-]+$/;
if ($actual_classifications[$i] == $predicted_classifications[$i]) {
$correct++;
}
$total++;
}
$accuracy = ($correct * 100) / $total;
$trial_accuracy[$trial] = $accuracy;
$total_accuracy += $accuracy;
if ($verbosity > 0) {
printf ("Correct: %d out of %d (%.2f percent accuracy)\n",
$correct, $total, $accuracy);
}
}
sub overall_accuracy {
# Calculte the overall (overall) accuracy
$overall_accuracy = $total_accuracy / $trial;
# Calculate the standard deviation of Overall Accuracy
$overall_accuracy_stddev = 0;
for ($i = 0; $i < $trial; $i++) {
$diff_from_mean = $overall_accuracy - $trial_accuracy[$i];
$overall_accuracy_stddev += $diff_from_mean * $diff_from_mean;
}
$overall_accuracy_stddev = sqrt ($overall_accuracy_stddev / $trial);
if ($verbosity > 0) {
printf ("Percent_Accuracy average %.2f stderr %.2f\n",
$overall_accuracy,
$overall_accuracy_stddev / sqrt($trial));
} else {
printf ("%.2f %.2f\n",
$overall_accuracy,
$overall_accuracy_stddev / sqrt($trial));
}
}
# Function to produce a confusion matrix from the data
sub confusion {
undef @confusion;
my $total_predicted;
if (! $verbosity > 0) {
return;
}
print "\n - Confusion details, row is actual, column is predicted\n";
# Loop over all the examples
# for ($i = 0; $i < @ids; $i++) {
for ($i = 0; $i < $num_pages; $i++) {
# $actual = $actual_classifications[$i];
# $actual_code = $classes_to_codes{$actual};
$actual_code = $actual_classifications[$i];
# $predicted_classifications[$i][0] =~ /^(.+):[\.0-9e+\-]+$/;
# $predicted_classifications[$i] =~ /^(.+):[\.0-9e+\-]+$/;
# $predicted_code = $classes_to_codes{$1};
$predicted_code = $predicted_classifications[$i];
$confusion[$actual_code][$predicted_code] += 1;
}
# Get the maximum classname length, so we know how much space
# to allow for it in the formatting.
$max_classname_length = length ("classname");
for ($i = 0; $i < @codes_to_classes; $i++) {
$classname_length = length ($codes_to_classes[$i]);
if ($classname_length > $max_classname_length) {
$max_classname_length = $classname_length;
}
}
# Print out a header for the matrix
printf (" %${max_classname_length}s ", "classname");
for ($i = 0; $i < @codes_to_classes; $i++) {
printf ("%3d ", $i);
}
print " :total\n";
# Now print out the matrix
for ($i = 0; $i < @codes_to_classes; $i++) {
printf ("%2d %${max_classname_length}s ",
$i, $codes_to_classes[$i]);
$total_predicted = 0;
for ($j = 0; $j < @codes_to_classes; $j++) {
if ($confusion[$i][$j] == 0) {
printf ("%3s ", ".");
} else {
printf ("%3d ", $confusion[$i][$j]);
}
$total_predicted += $confusion[$i][$j];
}
if ($total_predicted > 0) {
printf (" :%3d %6.2f%%",
$total_predicted,
100 * $confusion[$i][$i] / $total_predicted);
} else {
printf (" :%3s", ".");
}
print "\n";
}
print "\n";
}
|