File: aligner_seed.cpp

package info (click to toggle)
bowtie2 2.0.0-beta6-3
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 19,868 kB
  • sloc: cpp: 51,617; perl: 1,045; sh: 1,002; makefile: 272
file content (1839 lines) | stat: -rw-r--r-- 55,413 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
/*
 * Copyright 2011, Ben Langmead <blangmea@jhsph.edu>
 *
 * This file is part of Bowtie 2.
 *
 * Bowtie 2 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Bowtie 2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
 */

#include "aligner_cache.h"
#include "aligner_seed.h"
#include "search_globals.h"
#include "bt2_idx.h"

using namespace std;

/**
 * Construct a constraint with no edits of any kind allowed.
 */
Constraint Constraint::exact() {
	Constraint c;
	c.edits = c.mms = c.ins = c.dels = c.penalty = 0;
	return c;
}

/**
 * Construct a constraint where the only constraint is a total
 * penalty constraint.
 */
Constraint Constraint::penaltyBased(int pen) {
	Constraint c;
	c.penalty = pen;
	return c;
}

/**
 * Construct a constraint where the only constraint is a total
 * penalty constraint related to the length of the read.
 */
Constraint Constraint::penaltyFuncBased(const SimpleFunc& f) {
	Constraint c;
	c.penFunc = f;
	return c;
}

/**
 * Construct a constraint where the only constraint is a total
 * penalty constraint.
 */
Constraint Constraint::mmBased(int mms) {
	Constraint c;
	c.mms = mms;
	c.edits = c.dels = c.ins = 0;
	return c;
}

/**
 * Construct a constraint where the only constraint is a total
 * penalty constraint.
 */
Constraint Constraint::editBased(int edits) {
	Constraint c;
	c.edits = edits;
	c.dels = c.ins = c.mms = 0;
	return c;
}

//
// Some static methods for constructing some standard SeedPolicies
//

/**
 * Given a read, depth and orientation, extract a seed data structure
 * from the read and fill in the steps & zones arrays.  The Seed
 * contains the sequence and quality values.
 */
bool
Seed::instantiate(
	const Read& read,
	const BTDnaString& seq, // seed read sequence
	const BTString& qual,   // seed quality sequence
	const Scoring& pens,
	int depth,
	int seedoffidx,
	int seedtypeidx,
	bool fw,
	InstantiatedSeed& is) const
{
	assert(overall != NULL);
	int seedlen = len;
	if((int)read.length() < seedlen) {
		// Shrink seed length to fit read if necessary
		seedlen = (int)read.length();
	}
	assert_gt(seedlen, 0);
	is.steps.resize(seedlen);
	is.zones.resize(seedlen);
	// Fill in 'steps' and 'zones'
	//
	// The 'steps' list indicates which read character should be
	// incorporated at each step of the search process.  Often we will
	// simply proceed from one end to the other, in which case the
	// 'steps' list is ascending or descending.  In some cases (e.g.
	// the 2mm case), we might want to switch directions at least once
	// during the search, in which case 'steps' will jump in the
	// middle.  When an element of the 'steps' list is negative, this
	// indicates that the next
	//
	// The 'zones' list indicates which zone constraint is active at
	// each step.  Each element of the 'zones' list is a pair; the
	// first pair element indicates the applicable zone when
	// considering either mismatch or delete (ref gap) events, while
	// the second pair element indicates the applicable zone when
	// considering insertion (read gap) events.  When either pair
	// element is a negative number, that indicates that we are about
	// to leave the zone for good, at which point we may need to
	// evaluate whether we have reached the zone's budget.
	//
	switch(type) {
		case SEED_TYPE_EXACT: {
			for(int k = 0; k < seedlen; k++) {
				is.steps[k] = -(seedlen - k);
				// Zone 0 all the way
				is.zones[k].first = is.zones[k].second = 0;
			}
			break;
		}
		case SEED_TYPE_LEFT_TO_RIGHT: {
			for(int k = 0; k < seedlen; k++) {
				is.steps[k] = k+1;
				// Zone 0 from 0 up to ceil(len/2), then 1
				is.zones[k].first = is.zones[k].second = ((k < (seedlen+1)/2) ? 0 : 1);
			}
			// Zone 1 ends at the RHS
			is.zones[seedlen-1].first = is.zones[seedlen-1].second = -1;
			break;
		}
		case SEED_TYPE_RIGHT_TO_LEFT: {
			for(int k = 0; k < seedlen; k++) {
				is.steps[k] = -(seedlen - k);
				// Zone 0 from 0 up to floor(len/2), then 1
				is.zones[k].first  = ((k < seedlen/2) ? 0 : 1);
				// Inserts: Zone 0 from 0 up to ceil(len/2)-1, then 1
				is.zones[k].second = ((k < (seedlen+1)/2+1) ? 0 : 1);
			}
			is.zones[seedlen-1].first = is.zones[seedlen-1].second = -1;
			break;
		}
		case SEED_TYPE_INSIDE_OUT: {
			// Zone 0 from ceil(N/4) up to N-floor(N/4)
			int step = 0;
			for(int k = (seedlen+3)/4; k < seedlen - (seedlen/4); k++) {
				is.zones[step].first = is.zones[step].second = 0;
				is.steps[step++] = k+1;
			}
			// Zone 1 from N-floor(N/4) up
			for(int k = seedlen - (seedlen/4); k < seedlen; k++) {
				is.zones[step].first = is.zones[step].second = 1;
				is.steps[step++] = k+1;
			}
			// No Zone 1 if seedlen is short (like 2)
			//assert_eq(1, is.zones[step-1].first);
			is.zones[step-1].first = is.zones[step-1].second = -1;
			// Zone 2 from ((seedlen+3)/4)-1 down to 0
			for(int k = ((seedlen+3)/4)-1; k >= 0; k--) {
				is.zones[step].first = is.zones[step].second = 2;
				is.steps[step++] = -(k+1);
			}
			assert_eq(2, is.zones[step-1].first);
			is.zones[step-1].first = is.zones[step-1].second = -2;
			assert_eq(seedlen, step);
			break;
		}
		default:
			throw 1;
	}
	// Instantiate constraints
	for(int i = 0; i < 3; i++) {
		is.cons[i] = zones[i];
		is.cons[i].instantiate(read.length());
	}
	is.overall = *overall;
	is.overall.instantiate(read.length());
	// Take a sweep through the seed sequence.  Consider where the Ns
	// occur and how zones are laid out.  Calculate the maximum number
	// of positions we can jump over initially (e.g. with the ftab) and
	// perhaps set this function's return value to false, indicating
	// that the arrangements of Ns prevents the seed from aligning.
	bool streak = true;
	is.maxjump = 0;
	bool ret = true;
	bool ltr = (is.steps[0] > 0); // true -> left-to-right
	for(size_t i = 0; i < is.steps.size(); i++) {
		assert_neq(0, is.steps[i]);
		int off = is.steps[i];
		off = abs(off)-1;
		Constraint& cons = is.cons[abs(is.zones[i].first)];
		int c = seq[off];  assert_range(0, 4, c);
		int q = qual[off];
		if(ltr != (is.steps[i] > 0) || // changed direction
		   is.zones[i].first != 0 ||   // changed zone
		   is.zones[i].second != 0)    // changed zone
		{
			streak = false;
		}
		if(c == 4) {
			// Induced mismatch
			if(cons.canN(q, pens)) {
				cons.chargeN(q, pens);
			} else {
				// Seed disqualified due to arrangement of Ns
				return false;
			}
		}
		if(streak) is.maxjump++;
	}
	is.seedoff = depth;
	is.seedoffidx = seedoffidx;
	is.fw = fw;
	is.s = *this;
	return ret;
}

/**
 * Return a set consisting of 1 seed encapsulating an exact matching
 * strategy.
 */
void
Seed::zeroMmSeeds(int ln, EList<Seed>& pols, Constraint& oall) {
	oall.init();
	// Seed policy 1: left-to-right search
	pols.expand();
	pols.back().len = ln;
	pols.back().type = SEED_TYPE_EXACT;
	pols.back().zones[0] = Constraint::exact();
	pols.back().zones[1] = Constraint::exact();
	pols.back().zones[2] = Constraint::exact(); // not used
	pols.back().overall = &oall;
}

/**
 * Return a set of 2 seeds encapsulating a half-and-half 1mm strategy.
 */
void
Seed::oneMmSeeds(int ln, EList<Seed>& pols, Constraint& oall) {
	oall.init();
	// Seed policy 1: left-to-right search
	pols.expand();
	pols.back().len = ln;
	pols.back().type = SEED_TYPE_LEFT_TO_RIGHT;
	pols.back().zones[0] = Constraint::exact();
	pols.back().zones[1] = Constraint::mmBased(1);
	pols.back().zones[2] = Constraint::exact(); // not used
	pols.back().overall = &oall;
	// Seed policy 2: right-to-left search
	pols.expand();
	pols.back().len = ln;
	pols.back().type = SEED_TYPE_RIGHT_TO_LEFT;
	pols.back().zones[0] = Constraint::exact();
	pols.back().zones[1] = Constraint::mmBased(1);
	pols.back().zones[1].mmsCeil = 0;
	pols.back().zones[2] = Constraint::exact(); // not used
	pols.back().overall = &oall;
}

/**
 * Return a set of 3 seeds encapsulating search roots for:
 *
 * 1. Starting from the left-hand side and searching toward the
 *    right-hand side allowing 2 mismatches in the right half.
 * 2. Starting from the right-hand side and searching toward the
 *    left-hand side allowing 2 mismatches in the left half.
 * 3. Starting (effectively) from the center and searching out toward
 *    both the left and right-hand sides, allowing one mismatch on
 *    either side.
 *
 * This is not exhaustive.  There are 2 mismatch cases mised; if you
 * imagine the seed as divided into four successive quarters A, B, C
 * and D, the cases we miss are when mismatches occur in A and C or B
 * and D.
 */
void
Seed::twoMmSeeds(int ln, EList<Seed>& pols, Constraint& oall) {
	oall.init();
	// Seed policy 1: left-to-right search
	pols.expand();
	pols.back().len = ln;
	pols.back().type = SEED_TYPE_LEFT_TO_RIGHT;
	pols.back().zones[0] = Constraint::exact();
	pols.back().zones[1] = Constraint::mmBased(2);
	pols.back().zones[2] = Constraint::exact(); // not used
	pols.back().overall = &oall;
	// Seed policy 2: right-to-left search
	pols.expand();
	pols.back().len = ln;
	pols.back().type = SEED_TYPE_RIGHT_TO_LEFT;
	pols.back().zones[0] = Constraint::exact();
	pols.back().zones[1] = Constraint::mmBased(2);
	pols.back().zones[1].mmsCeil = 1; // Must have used at least 1 mismatch
	pols.back().zones[2] = Constraint::exact(); // not used
	pols.back().overall = &oall;
	// Seed policy 3: inside-out search
	pols.expand();
	pols.back().len = ln;
	pols.back().type = SEED_TYPE_INSIDE_OUT;
	pols.back().zones[0] = Constraint::exact();
	pols.back().zones[1] = Constraint::mmBased(1);
	pols.back().zones[1].mmsCeil = 0; // Must have used at least 1 mismatch
	pols.back().zones[2] = Constraint::mmBased(1);
	pols.back().zones[2].mmsCeil = 0; // Must have used at least 1 mismatch
	pols.back().overall = &oall;
}

/**
 * Types of actions that can be taken by the SeedAligner.
 */
enum {
	SA_ACTION_TYPE_RESET = 1,
	SA_ACTION_TYPE_SEARCH_SEED, // 2
	SA_ACTION_TYPE_FTAB,        // 3
	SA_ACTION_TYPE_FCHR,        // 4
	SA_ACTION_TYPE_MATCH,       // 5
	SA_ACTION_TYPE_EDIT         // 6
};

#define MIN(x, y) ((x < y) ? x : y)

/**
 * Given a read and a few coordinates that describe a substring of the read (or
 * its reverse complement), fill in 'seq' and 'qual' objects with the seed
 * sequence and qualities.
 *
 * The seq field is filled with the sequence as it would align to the Watson
 * reference strand.  I.e. if fw is false, then the sequence that appears in
 * 'seq' is the reverse complement of the raw read substring.
 */
void
SeedAligner::instantiateSeq(
	const Read& read, // input read
	BTDnaString& seq, // output sequence
	BTString& qual,   // output qualities
	int len,          // seed length
	int depth,        // seed's 0-based offset from 5' end
	bool fw) const    // seed's orientation
{
	// Fill in 'seq' and 'qual'
	int seedlen = len;
	if((int)read.length() < seedlen) seedlen = (int)read.length();
	seq.resize(len);
	qual.resize(len);
	// If fw is false, we take characters starting at the 3' end of the
	// reverse complement of the read.
	for(int i = 0; i < len; i++) {
		seq.set(read.patFw.windowGetDna(i, fw, read.color, depth, len), i);
		qual.set(read.qual.windowGet(i, fw, depth, len), i);
	}
}

/**
 * We assume that all seeds are the same length.
 *
 * For each seed, instantiate the seed, retracting if necessary.
 */
pair<int, int> SeedAligner::instantiateSeeds(
	const EList<Seed>& seeds,  // search seeds
	size_t off,                // offset into read to start extracting
	int per,                   // interval between seeds
	const Read& read,          // read to align
	const Scoring& pens,       // scoring scheme
	bool nofw,                 // don't align forward read
	bool norc,                 // don't align revcomp read
	AlignmentCacheIface& cache,// holds some seed hits from previous reads
	SeedResults& sr,           // holds all the seed hits
	SeedSearchMetrics& met)    // metrics
{
	assert(!seeds.empty());
	assert_gt(read.length(), 0);
	// Check whether read has too many Ns
	offIdx2off_.clear();
	int len = seeds[0].len; // assume they're all the same length
#ifndef NDEBUG
	for(size_t i = 1; i < seeds.size(); i++) {
		assert_eq(len, seeds[i].len);
	}
#endif
	// Calc # seeds within read interval
	int nseeds = 1;
	if((int)read.length() - (int)off > len) {
		nseeds += ((int)read.length() - (int)off - len) / per;
	}
	for(int i = 0; i < nseeds; i++) {
		offIdx2off_.push_back(per * i + (int)off);
	}
	pair<int, int> ret;
	ret.first = 0;  // # seeds that require alignment
	ret.second = 0; // # seeds that hit in cache with non-empty results
	sr.reset(read, offIdx2off_, nseeds);
	assert(sr.repOk(&cache.current(), true)); // require that SeedResult be initialized
	// For each seed position
	for(int fwi = 0; fwi < 2; fwi++) {
		bool fw = (fwi == 0);
		if((fw && nofw) || (!fw && norc)) {
			// Skip this orientation b/c user specified --nofw or --norc
			continue;
		}
		// For each seed position
		for(int i = 0; i < nseeds; i++) {
			int depth = i * per + (int)off;
			int seedlen = seeds[0].len;
			// Extract the seed sequence at this offset
			// If fw == true, we extract the characters from i*per to
			// i*(per-1) (exclusive).  If fw == false, 
			instantiateSeq(
				read,
				sr.seqs(fw)[i],
				sr.quals(fw)[i],
				std::min<int>((int)seedlen, (int)read.length()),
				depth,
				fw);
			QKey qk(sr.seqs(fw)[i] ASSERT_ONLY(, tmpdnastr_));
			// For each search strategy
			EList<InstantiatedSeed>& iss = sr.instantiatedSeeds(fw, i);
			for(int j = 0; j < (int)seeds.size(); j++) {
				iss.expand();
				assert_eq(seedlen, seeds[j].len);
				InstantiatedSeed* is = &iss.back();
				if(seeds[j].instantiate(
					read,
					sr.seqs(fw)[i],
					sr.quals(fw)[i],
					pens,
					depth,
					i,
					j,
					fw,
					*is))
				{
					// Can we fill this seed hit in from the cache?
					ret.first++;
				} else {
					// Seed may fail to instantiate if there are Ns
					// that prevent it from matching
					met.filteredseed++;
					iss.pop_back();
				}
			}
		}
	}
	return ret;
}

/**
 * We assume that all seeds are the same length.
 *
 * For each seed:
 *
 * 1. Instantiate all seeds, retracting them if necessary.
 * 2. Calculate zone boundaries for each seed
 */
void SeedAligner::searchAllSeeds(
	const EList<Seed>& seeds,    // search seeds
	const Ebwt* ebwtFw,          // BWT index
	const Ebwt* ebwtBw,          // BWT' index
	const Read& read,            // read to align
	const Scoring& pens,         // scoring scheme
	AlignmentCacheIface& cache,  // local cache for seed alignments
	SeedResults& sr,             // holds all the seed hits
	SeedSearchMetrics& met,      // metrics
	PerReadMetrics& prm)         // per-read metrics
{
	assert(!seeds.empty());
	assert(ebwtFw != NULL);
	assert(ebwtFw->isInMemory());
	assert(sr.repOk(&cache.current()));
	ebwtFw_ = ebwtFw;
	ebwtBw_ = ebwtBw;
	sc_ = &pens;
	read_ = &read;
	ca_ = &cache;
	bwops_ = bwedits_ = 0;
	uint64_t possearches = 0, seedsearches = 0, intrahits = 0, interhits = 0, ooms = 0;
	// For each instantiated seed
	for(int i = 0; i < (int)sr.numOffs(); i++) {
		size_t off = sr.idx2off(i);
		for(int fwi = 0; fwi < 2; fwi++) {
			bool fw = (fwi == 0);
			assert(sr.repOk(&cache.current()));
			EList<InstantiatedSeed>& iss = sr.instantiatedSeeds(fw, i);
			if(iss.empty()) {
				// Cache hit in an across-read cache
				continue;
			}
			QVal qv;
			seq_  = &sr.seqs(fw)[i];  // seed sequence
			qual_ = &sr.quals(fw)[i]; // seed qualities
			off_  = off;              // seed offset (from 5')
			fw_   = fw;               // seed orientation
			// Tell the cache that we've started aligning, so the cache can
			// expect a series of on-the-fly updates
			int ret = cache.beginAlign(*seq_, *qual_, qv);
			ASSERT_ONLY(hits_.clear());
			if(ret == -1) {
				// Out of memory when we tried to add key to map
				ooms++;
				continue;
			}
			bool abort = false;
			if(ret == 0) {
				// Not already in cache
				assert(cache.aligning());
				possearches++;
				for(size_t j = 0; j < iss.size(); j++) {
					// Set seq_ and qual_ appropriately, using the seed sequences
					// and qualities already installed in SeedResults
					assert_eq(fw, iss[j].fw);
					assert_eq(i, (int)iss[j].seedoffidx);
					s_ = &iss[j];
					// Do the search with respect to seq_, qual_ and s_.
					if(!searchSeedBi()) {
						// Memory exhausted during search
						ooms++;
						abort = true;
						break;
					}
					seedsearches++;
					assert(cache.aligning());
				}
				if(!abort) {
					qv = cache.finishAlign();
				}
			} else {
				// Already in cache
				assert_eq(1, ret);
				assert(qv.valid());
				intrahits++;
			}
			assert(abort || !cache.aligning());
			if(qv.valid()) {
				sr.add(
					qv,    // range of ranges in cache
					cache.current(), // cache
					i,     // seed index (from 5' end)
					fw);   // whether seed is from forward read
			}
		}
	}
	prm.nSdFmops += bwops_;
	met.seedsearch += seedsearches;
	met.possearch += possearches;
	met.intrahit += intrahits;
	met.interhit += interhits;
	met.ooms += ooms;
	met.bwops += bwops_;
	met.bweds += bwedits_;
}

bool SeedAligner::sanityPartial(
	const Ebwt*        ebwtFw, // BWT index
	const Ebwt*        ebwtBw, // BWT' index
	const BTDnaString& seq,
	size_t dep,
	size_t len,
	bool do1mm,
	uint32_t topfw,
	uint32_t botfw,
	uint32_t topbw,
	uint32_t botbw)
{
	tmpdnastr_.clear();
	for(size_t i = dep; i < len; i++) {
		tmpdnastr_.append(seq[i]);
	}
	uint32_t top_fw = 0, bot_fw = 0;
	ebwtFw->contains(tmpdnastr_, &top_fw, &bot_fw);
	assert_eq(top_fw, topfw);
	assert_eq(bot_fw, botfw);
	if(do1mm && ebwtBw != NULL) {
		tmpdnastr_.reverse();
		uint32_t top_bw = 0, bot_bw = 0;
		ebwtBw->contains(tmpdnastr_, &top_bw, &bot_bw);
		assert_eq(top_bw, topbw);
		assert_eq(bot_bw, botbw);
	}
	return true;
}

/**
 * Sweep right-to-left and left-to-right using exact matching.  Remember all
 * the SA ranges encountered along the way.  Report exact matches if there are
 * any.  Calculate a lower bound on the number of edits in an end-to-end
 * alignment.
 */
size_t SeedAligner::exactSweep(
	const Ebwt&        ebwt,    // BWT index
	const Read&        read,    // read to align
	const Scoring&     sc,      // scoring scheme
	bool               nofw,    // don't align forward read
	bool               norc,    // don't align revcomp read
	size_t             mineMax, // don't care about edit bounds > this
	size_t&            mineFw,  // minimum # edits for forward read
	size_t&            mineRc,  // minimum # edits for revcomp read
	bool               repex,   // report 0mm hits?
	SeedResults&       hits,    // holds all the seed hits (and exact hit)
	SeedSearchMetrics& met)     // metrics
{
	assert_gt(mineMax, 0);
	uint32_t top = 0, bot = 0;
	SideLocus tloc, bloc;
	const size_t len = read.length();
	size_t nelt = 0;
	for(int fwi = 0; fwi < 2; fwi++) {
		bool fw = (fwi == 0);
		if( fw && nofw) continue;
		if(!fw && norc) continue;
		const BTDnaString& seq = fw ? read.patFw : read.patRc;
		assert(!seq.empty());
		int ftabLen = ebwt.eh().ftabChars();
		size_t dep = 0;
		size_t nedit = 0;
		bool done = false;
		while(dep < len && !done) {
			top = bot = 0;
			size_t left = len - dep;
			assert_gt(left, 0);
			bool doFtab = ftabLen > 1 && left >= (size_t)ftabLen;
			if(doFtab) {
				// Does N interfere with use of Ftab?
				for(size_t i = 0; i < (size_t)ftabLen; i++) {
					int c = seq[len-dep-1-i];
					if(c > 3) {
						doFtab = false;
						break;
					}
				}
			}
			if(doFtab) {
				// Use ftab
				ebwt.ftabLoHi(seq, len - dep - ftabLen, false, top, bot);
				dep += (size_t)ftabLen;
			} else {
				// Use fchr
				int c = seq[len-dep-1];
				if(c < 4) {
					top = ebwt.fchr()[c];
					bot = ebwt.fchr()[c+1];
				}
				dep++;
			}
			if(bot <= top) {
				nedit++;
				if(nedit >= mineMax) {
					if(fw) { mineFw = nedit; } else { mineRc = nedit; }
					break;
				}
				continue;
			}
			INIT_LOCS(top, bot, tloc, bloc, ebwt);
			// Keep going
			while(dep < len) {
				int c = seq[len-dep-1];
				if(c > 3) {
					top = bot = 0;
				} else {
					if(bloc.valid()) {
						bwops_ += 2;
						top = ebwt.mapLF(tloc, c);
						bot = ebwt.mapLF(bloc, c);
					} else {
						bwops_++;
						top = ebwt.mapLF1(top, tloc, c);
						if(top == 0xffffffff) {
							top = bot = 0;
						} else {
							bot = top+1;
						}
					}
				}
				if(bot <= top) {
					nedit++;
					if(nedit >= mineMax) {
						if(fw) { mineFw = nedit; } else { mineRc = nedit; }
						done = true;
					}
					break;
				}
				INIT_LOCS(top, bot, tloc, bloc, ebwt);
				dep++;
			}
			if(done) {
				break;
			}
			if(dep == len) {
				// Set the minimum # edits
				if(fw) { mineFw = nedit; } else { mineRc = nedit; }
				// Done
				if(nedit == 0 && bot > top) {
					if(repex) {
						// This is an exact hit
						int64_t score = len * sc.match();
						if(fw) {
							hits.addExactEeFw(top, bot, NULL, NULL, fw, score);
							assert(ebwt.contains(seq, NULL, NULL));
						} else {
							hits.addExactEeRc(top, bot, NULL, NULL, fw, score);
							assert(ebwt.contains(seq, NULL, NULL));
						}
					}
					nelt += (bot - top);
				}
				break;
			}
			dep++;
		}
	}
	return nelt;
}

/**
 * Search for end-to-end exact hit for read.  Return true iff one is found.
 */
bool SeedAligner::oneMmSearch(
	const Ebwt*        ebwtFw, // BWT index
	const Ebwt*        ebwtBw, // BWT' index
	const Read&        read,   // read to align
	const Scoring&     sc,     // scoring
	int64_t            minsc,  // minimum score
	bool               nofw,   // don't align forward read
	bool               norc,   // don't align revcomp read
	bool               local,  // 1mm hits must be legal local alignments
	bool               repex,  // report 0mm hits?
	bool               rep1mm, // report 1mm hits?
	SeedResults&       hits,   // holds all the seed hits (and exact hit)
	SeedSearchMetrics& met)    // metrics
{
	assert(!rep1mm || ebwtBw != NULL);
	const size_t len = read.length();
	int nceil = sc.nCeil.f<int>((double)len);
	size_t ns = read.ns();
	if(ns > 1) {
		// Can't align this with <= 1 mismatches
		return false;
	} else if(ns == 1 && !rep1mm) {
		// Can't align this with 0 mismatches
		return false;
	}
	assert_geq(len, 2);
	assert(!rep1mm || ebwtBw->eh().ftabChars() == ebwtFw->eh().ftabChars());
#ifndef NDEBUG
	if(ebwtBw != NULL) {
		for(int i = 0; i < 4; i++) {
			assert_eq(ebwtBw->fchr()[i], ebwtFw->fchr()[i]);
		}
	}
#endif
	size_t halfFw = len >> 1;
	size_t halfBw = len >> 1;
	if((len & 1) != 0) {
		halfBw++;
	}
	assert_geq(halfFw, 1);
	assert_geq(halfBw, 1);
	SideLocus tloc, bloc;
	uint32_t t[4], b[4];   // dest BW ranges for BWT
	t[0] = t[1] = t[2] = t[3] = 0;
	b[0] = b[1] = b[2] = b[3] = 0;
	uint32_t tp[4], bp[4]; // dest BW ranges for BWT'
	tp[0] = tp[1] = tp[2] = tp[3] = 0;
	bp[0] = bp[1] = bp[2] = bp[3] = 0;
	uint32_t top = 0, bot = 0, topp = 0, botp = 0;
	// Align fw read / rc read
	bool results = false;
	for(int fwi = 0; fwi < 2; fwi++) {
		bool fw = (fwi == 0);
		if( fw && nofw) continue;
		if(!fw && norc) continue;
		// Align going right-to-left, left-to-right
		int lim = rep1mm ? 2 : 1;
		for(int ebwtfwi = 0; ebwtfwi < lim; ebwtfwi++) {
			bool ebwtfw = (ebwtfwi == 0);
			const Ebwt* ebwt  = (ebwtfw ? ebwtFw : ebwtBw);
			const Ebwt* ebwtp = (ebwtfw ? ebwtBw : ebwtFw);
			assert(rep1mm || ebwt->fw());
			const BTDnaString& seq =
				(fw ? (ebwtfw ? read.patFw : read.patFwRev) :
				      (ebwtfw ? read.patRc : read.patRcRev));
			assert(!seq.empty());
			const BTString& qual =
				(fw ? (ebwtfw ? read.qual    : read.qualRev) :
				      (ebwtfw ? read.qualRev : read.qual));
			int ftabLen = ebwt->eh().ftabChars();
			size_t nea = ebwtfw ? halfFw : halfBw;
			// Check if there's an N in the near portion
			bool skip = false;
			for(size_t dep = 0; dep < nea; dep++) {
				if(seq[len-dep-1] > 3) {
					skip = true;
					break;
				}
			}
			if(skip) {
				continue;
			}
			size_t dep = 0;
			// Align near half
			if(ftabLen > 1 && (size_t)ftabLen <= nea) {
				// Use ftab to jump partway into near half
				bool rev = !ebwtfw;
				ebwt->ftabLoHi(seq, len - ftabLen, rev, top, bot);
				if(rep1mm) {
					ebwtp->ftabLoHi(seq, len - ftabLen, rev, topp, botp);
					assert_eq(bot - top, botp - topp);
				}
				if(bot - top == 0) {
					continue;
				}
				int c = seq[len - ftabLen];
				t[c] = top; b[c] = bot;
				tp[c] = topp; bp[c] = botp;
				dep = ftabLen;
				// initialize tloc, bloc??
			} else {
				// Use fchr to jump in by 1 pos
				int c = seq[len-1];
				assert_range(0, 3, c);
				top = topp = tp[c] = ebwt->fchr()[c];
				bot = botp = bp[c] = ebwt->fchr()[c+1];
				if(bot - top == 0) {
					continue;
				}
				dep = 1;
				// initialize tloc, bloc??
			}
			INIT_LOCS(top, bot, tloc, bloc, *ebwt);
			assert(sanityPartial(ebwt, ebwtp, seq, len-dep, len, rep1mm, top, bot, topp, botp));
			bool do_continue = false;
			for(; dep < nea; dep++) {
				assert_lt(dep, len);
				int rdc = seq[len - dep - 1];
				tp[0] = tp[1] = tp[2] = tp[3] = topp;
				bp[0] = bp[1] = bp[2] = bp[3] = botp;
				if(bloc.valid()) {
					bwops_++;
					t[0] = t[1] = t[2] = t[3] = b[0] = b[1] = b[2] = b[3] = 0;
					ebwt->mapBiLFEx(tloc, bloc, t, b, tp, bp);
					SANITY_CHECK_4TUP(t, b, tp, bp);
					top = t[rdc]; bot = b[rdc];
					if(bot <= top) {
						do_continue = true;
						break;
					}
					topp = tp[rdc]; botp = bp[rdc];
					assert(!rep1mm || bot - top == botp - topp);
				} else {
					assert_eq(bot, top+1);
					assert(!rep1mm || botp == topp+1);
					bwops_++;
					top = ebwt->mapLF1(top, tloc, rdc);
					if(top == 0xffffffff) {
						do_continue = true;
						break;
					}
					bot = top + 1;
					t[rdc] = top; b[rdc] = bot;
					tp[rdc] = topp; bp[rdc] = botp;
					assert(!rep1mm || b[rdc] - t[rdc] == bp[rdc] - tp[rdc]);
					// topp/botp stay the same
				}
				INIT_LOCS(top, bot, tloc, bloc, *ebwt);
				assert(sanityPartial(ebwt, ebwtp, seq, len - dep - 1, len, rep1mm, top, bot, topp, botp));
			}
			if(do_continue) {
				continue;
			}
			// Align far half
			for(; dep < len; dep++) {
				int rdc = seq[len-dep-1];
				int quc = qual[len-dep-1];
				if(rdc > 3 && nceil == 0) {
					break;
				}
				tp[0] = tp[1] = tp[2] = tp[3] = topp;
				bp[0] = bp[1] = bp[2] = bp[3] = botp;
				int clo = 0, chi = 3;
				bool match = true;
				if(bloc.valid()) {
					bwops_++;
					t[0] = t[1] = t[2] = t[3] = b[0] = b[1] = b[2] = b[3] = 0;
					ebwt->mapBiLFEx(tloc, bloc, t, b, tp, bp);
					SANITY_CHECK_4TUP(t, b, tp, bp);
					match = rdc < 4;
					top = t[rdc]; bot = b[rdc];
					topp = tp[rdc]; botp = bp[rdc];
				} else {
					assert_eq(bot, top+1);
					assert(!rep1mm || botp == topp+1);
					bwops_++;
					clo = ebwt->mapLF1(top, tloc);
					match = (clo == rdc);
					assert_range(-1, 3, clo);
					if(clo < 0) {
						break; // Hit the $
					} else {
						t[clo] = top;
						b[clo] = bot = top + 1;
					}
					bp[clo] = botp;
					tp[clo] = topp;
					assert(!rep1mm || bot - top == botp - topp);
					assert(!rep1mm || b[clo] - t[clo] == bp[clo] - tp[clo]);
					chi = clo;
				}
				//assert(sanityPartial(ebwt, ebwtp, seq, len - dep - 1, len, rep1mm, top, bot, topp, botp));
				if(rep1mm && (ns == 0 || rdc > 3)) {
					for(int j = clo; j <= chi; j++) {
						if(j == rdc || b[j] == t[j]) {
							// Either matches read or isn't a possibility
							continue;
						}
						// Potential mismatch - next, try
						size_t depm = dep + 1;
						uint32_t topm = t[j], botm = b[j];
						uint32_t topmp = tp[j], botmp = bp[j];
						assert_eq(botm - topm, botmp - topmp);
						uint32_t tm[4], bm[4];   // dest BW ranges for BWT
						tm[0] = t[0]; tm[1] = t[1];
						tm[2] = t[2]; tm[3] = t[3];
						bm[0] = b[0]; bm[1] = t[1];
						bm[2] = b[2]; bm[3] = t[3];
						uint32_t tmp[4], bmp[4]; // dest BW ranges for BWT'
						tmp[0] = tp[0]; tmp[1] = tp[1];
						tmp[2] = tp[2]; tmp[3] = tp[3];
						bmp[0] = bp[0]; bmp[1] = tp[1];
						bmp[2] = bp[2]; bmp[3] = tp[3];
						SideLocus tlocm, blocm;
						INIT_LOCS(topm, botm, tlocm, blocm, *ebwt);
						for(; depm < len; depm++) {
							int rdcm = seq[len - depm - 1];
							tmp[0] = tmp[1] = tmp[2] = tmp[3] = topmp;
							bmp[0] = bmp[1] = bmp[2] = bmp[3] = botmp;
							if(blocm.valid()) {
								bwops_++;
								tm[0] = tm[1] = tm[2] = tm[3] =
								bm[0] = bm[1] = bm[2] = bm[3] = 0;
								ebwt->mapBiLFEx(tlocm, blocm, tm, bm, tmp, bmp);
								SANITY_CHECK_4TUP(tm, bm, tmp, bmp);
								topm = tm[rdcm]; botm = bm[rdcm];
								topmp = tmp[rdcm]; botmp = bmp[rdcm];
								if(botm <= topm) {
									break;
								}
							} else {
								assert_eq(botm, topm+1);
								assert_eq(botmp, topmp+1);
								bwops_++;
								topm = ebwt->mapLF1(topm, tlocm, rdcm);
								if(topm == 0xffffffff) {
									break;
								}
								botm = topm + 1;
								// topp/botp stay the same
							}
							INIT_LOCS(topm, botm, tlocm, blocm, *ebwt);
						}
						if(depm == len) {
							// Success; this is a 1MM hit
							size_t off5p = dep;  // offset from 5' end of read
							size_t offstr = dep; // offset into patFw/patRc
							if(fw == ebwtfw) {
								off5p = len - off5p - 1;
							}
							if(!ebwtfw) {
								offstr = len - offstr - 1;
							}
							Edit e((uint32_t)off5p, j, rdc, EDIT_TYPE_MM, false);
							results = true;
							int64_t score = (len - 1) * sc.match();
							// In --local mode, need to double-check that
							// end-to-end alignment doesn't violate  local
							// alignment principles.  Specifically, it
							// shouldn't to or below 0 anywhere in the middle.
							int pen = sc.score(rdc, (int)(1 << j), quc - 33);
							score += pen;
							bool valid = true;
							if(local) {
								int64_t locscore_fw = 0, locscore_bw = 0;
								for(size_t i = 0; i < len; i++) {
									if(i == dep) {
										if(locscore_fw + pen <= 0) {
											valid = false;
											break;
										}
										locscore_fw += pen;
									} else {
										locscore_fw += sc.match();
									}
									if(len-i-1 == dep) {
										if(locscore_bw + pen <= 0) {
											valid = false;
											break;
										}
										locscore_bw += pen;
									} else {
										locscore_bw += sc.match();
									}
								}
							}
							if(valid) {
								valid = score >= minsc;
							}
							if(valid) {
#ifndef NDEBUG
								BTDnaString& rf = tmprfdnastr_;
								rf.clear();
								edits_.clear();
								edits_.push_back(e);
								if(!fw) Edit::invertPoss(edits_, len);
								Edit::toRef(fw ? read.patFw : read.patRc, edits_, rf);
								if(!fw) Edit::invertPoss(edits_, len);
								assert_eq(len, rf.length());
								for(size_t i = 0; i < len; i++) {
									assert_lt((int)rf[i], 4);
								}
								ASSERT_ONLY(uint32_t toptmp = 0);
								ASSERT_ONLY(uint32_t bottmp = 0);
								assert(ebwtFw->contains(rf, &toptmp, &bottmp));
#endif
								uint32_t toprep = ebwtfw ? topm : topmp;
								uint32_t botrep = ebwtfw ? botm : botmp;
								assert_eq(toprep, toptmp);
								assert_eq(botrep, bottmp);
								hits.add1mmEe(toprep, botrep, &e, NULL, fw, score);
							}
						}
					}
				}
				if(bot > top && match) {
					assert_lt(rdc, 4);
					if(dep == len-1) {
						// Success; this is an exact hit
						if(ebwtfw && repex) {
							if(fw) {
								results = true;
								int64_t score = len * sc.match();
								hits.addExactEeFw(
									ebwtfw ? top : topp,
									ebwtfw ? bot : botp,
									NULL, NULL, fw, score);
								assert(ebwtFw->contains(seq, NULL, NULL));
							} else {
								results = true;
								int64_t score = len * sc.match();
								hits.addExactEeRc(
									ebwtfw ? top : topp,
									ebwtfw ? bot : botp,
									NULL, NULL, fw, score);
								assert(ebwtFw->contains(seq, NULL, NULL));
							}
						}
						break; // End of far loop
					} else {
						INIT_LOCS(top, bot, tloc, bloc, *ebwt);
						assert(sanityPartial(ebwt, ebwtp, seq, len - dep - 1, len, rep1mm, top, bot, topp, botp));
					}
				} else {
					break; // End of far loop
				}
			} // for(; dep < len; dep++)
		} // for(int ebwtfw = 0; ebwtfw < 2; ebwtfw++)
	} // for(int fw = 0; fw < 2; fw++)
	return results;
}

/**
 * Wrapper for initial invcation of searchSeed.
 */
bool
SeedAligner::searchSeedBi() {
	return searchSeedBi(
		0, 0,
		0, 0, 0, 0,
		SideLocus(), SideLocus(),
		s_->cons[0], s_->cons[1], s_->cons[2], s_->overall,
		NULL);
}

/**
 * Get tloc, bloc ready for the next step.  If the new range is under
 * the ceiling.
 */
inline void
SeedAligner::nextLocsBi(
	SideLocus& tloc,            // top locus
	SideLocus& bloc,            // bot locus
	uint32_t topf,              // top in BWT
	uint32_t botf,              // bot in BWT
	uint32_t topb,              // top in BWT'
	uint32_t botb,              // bot in BWT'
	int step                    // step to get ready for
#if 0
	, const SABWOffTrack* prevOt, // previous tracker
	SABWOffTrack& ot            // current tracker
#endif
	)
{
	assert_gt(botf, 0);
	assert(ebwtBw_ == NULL || botb > 0);
	assert_geq(step, 0); // next step can't be first one
	assert(ebwtBw_ == NULL || botf-topf == botb-topb);
	if(step == (int)s_->steps.size()) return; // no more steps!
	// Which direction are we going in next?
	if(s_->steps[step] > 0) {
		// Left to right; use BWT'
		if(botb - topb == 1) {
			// Already down to 1 row; just init top locus
			tloc.initFromRow(topb, ebwtBw_->eh(), ebwtBw_->ebwt());
			bloc.invalidate();
		} else {
			SideLocus::initFromTopBot(
				topb, botb, ebwtBw_->eh(), ebwtBw_->ebwt(), tloc, bloc);
			assert(bloc.valid());
		}
	} else {
		// Right to left; use BWT
		if(botf - topf == 1) {
			// Already down to 1 row; just init top locus
			tloc.initFromRow(topf, ebwtFw_->eh(), ebwtFw_->ebwt());
			bloc.invalidate();
		} else {
			SideLocus::initFromTopBot(
				topf, botf, ebwtFw_->eh(), ebwtFw_->ebwt(), tloc, bloc);
			assert(bloc.valid());
		}
	}
	// Check if we should update the tracker with this refinement
#if 0
	if(botf-topf <= BW_OFF_TRACK_CEIL) {
		if(ot.size() == 0 && prevOt != NULL && prevOt->size() > 0) {
			// Inherit state from the predecessor
			ot = *prevOt;
		}
		bool ltr = s_->steps[step-1] > 0;
		int adj = abs(s_->steps[step-1])-1;
		const Ebwt* ebwt = ltr ? ebwtBw_ : ebwtFw_;
		ot.update(
			ltr ? topb : topf,    // top
			ltr ? botb : botf,    // bot
			adj,                  // adj (to be subtracted from offset)
			ebwt->offs(),         // offs array
			ebwt->eh().offRate(), // offrate (sample = every 1 << offrate elts)
			NULL                  // dead
		);
		assert_gt(ot.size(), 0);
	}
#endif
	assert(botf - topf == 1 ||  bloc.valid());
	assert(botf - topf > 1  || !bloc.valid());
}

/**
 * Report a seed hit found by searchSeedBi(), but first try to extend it out in
 * either direction as far as possible without hitting any edits.  This will
 * allow us to prioritize the seed hits better later on.  Call reportHit() when
 * we're done, which actually adds the hit to the cache.  Returns result from
 * calling reportHit().
 */
bool
SeedAligner::extendAndReportHit(
	uint32_t topf,                     // top in BWT
	uint32_t botf,                     // bot in BWT
	uint32_t topb,                     // top in BWT'
	uint32_t botb,                     // bot in BWT'
	uint16_t len,                      // length of hit
	DoublyLinkedList<Edit> *prevEdit)  // previous edit
{
	size_t nlex = 0, nrex = 0;
	uint32_t t[4], b[4];
	uint32_t tp[4], bp[4];
	SideLocus tloc, bloc;
	if(off_ > 0) {
		const Ebwt *ebwt = ebwtFw_;
		assert(ebwt != NULL);
		// Extend left using forward index
		const BTDnaString& seq = fw_ ? read_->patFw : read_->patRc;
		// See what we get by extending 
		uint32_t top = topf, bot = botf;
		t[0] = t[1] = t[2] = t[3] = 0;
		b[0] = b[1] = b[2] = b[3] = 0;
		tp[0] = tp[1] = tp[2] = tp[3] = topb;
		bp[0] = bp[1] = bp[2] = bp[3] = botb;
		SideLocus tloc, bloc;
		INIT_LOCS(top, bot, tloc, bloc, *ebwt);
		for(size_t ii = off_; ii > 0; ii--) {
			size_t i = ii-1;
			// Get char from read
			int rdc = seq.get(i);
			// See what we get by extending 
			if(bloc.valid()) {
				bwops_++;
				t[0] = t[1] = t[2] = t[3] =
				b[0] = b[1] = b[2] = b[3] = 0;
				ebwt->mapBiLFEx(tloc, bloc, t, b, tp, bp);
				SANITY_CHECK_4TUP(t, b, tp, bp);
				int nonz = -1;
				bool abort = false;
				for(int j = 0; j < 4; j++) {
					if(b[i] > t[i]) {
						if(nonz >= 0) {
							abort = true;
							break;
						}
						nonz = j;
						top = t[i]; bot = b[i];
					}
				}
				if(abort || nonz != rdc) {
					break;
				}
			} else {
				assert_eq(bot, top+1);
				bwops_++;
				int c = ebwt->mapLF1(top, tloc);
				if(c != rdc) {
					break;
				}
				bot = top + 1;
			}
			if(++nlex == 255) {
				break;
			}
			INIT_LOCS(top, bot, tloc, bloc, *ebwt);
		}
	}
	size_t rdlen = read_->length();
	size_t nright = rdlen - off_ - len;
	if(nright > 0 && ebwtBw_ != NULL) {
		const Ebwt *ebwt = ebwtBw_;
		assert(ebwt != NULL);
		// Extend right using backward index
		const BTDnaString& seq = fw_ ? read_->patFw : read_->patRc;
		// See what we get by extending 
		uint32_t top = topb, bot = botb;
		t[0] = t[1] = t[2] = t[3] = 0;
		b[0] = b[1] = b[2] = b[3] = 0;
		tp[0] = tp[1] = tp[2] = tp[3] = topb;
		bp[0] = bp[1] = bp[2] = bp[3] = botb;
		INIT_LOCS(top, bot, tloc, bloc, *ebwt);
		for(size_t i = off_ + len; i < rdlen; i++) {
			// Get char from read
			int rdc = seq.get(i);
			// See what we get by extending 
			if(bloc.valid()) {
				bwops_++;
				t[0] = t[1] = t[2] = t[3] =
				b[0] = b[1] = b[2] = b[3] = 0;
				ebwt->mapBiLFEx(tloc, bloc, t, b, tp, bp);
				SANITY_CHECK_4TUP(t, b, tp, bp);
				int nonz = -1;
				bool abort = false;
				for(int j = 0; j < 4; j++) {
					if(b[i] > t[i]) {
						if(nonz >= 0) {
							abort = true;
							break;
						}
						nonz = j;
						top = t[i]; bot = b[i];
					}
				}
				if(abort || nonz != rdc) {
					break;
				}
			} else {
				assert_eq(bot, top+1);
				bwops_++;
				int c = ebwt->mapLF1(top, tloc);
				if(c != rdc) {
					break;
				}
				bot = top + 1;
			}
			if(++nrex == 255) {
				break;
			}
			INIT_LOCS(top, bot, tloc, bloc, *ebwt);
		}
	}
	assert_lt(nlex, rdlen);
	assert_leq(nlex, off_);
	assert_lt(nrex, rdlen);
	return reportHit(topf, botf, topb, botb, len, prevEdit);
}

/**
 * Report a seed hit found by searchSeedBi() by adding it to the cache.  Return
 * false if the hit could not be reported because of, e.g., cache exhaustion.
 */
bool
SeedAligner::reportHit(
	uint32_t topf,                     // top in BWT
	uint32_t botf,                     // bot in BWT
	uint32_t topb,                     // top in BWT'
	uint32_t botb,                     // bot in BWT'
	uint16_t len,                      // length of hit
	DoublyLinkedList<Edit> *prevEdit)  // previous edit
{
	// Add information about the seed hit to AlignmentCache.  This
	// information eventually makes its way back to the SeedResults
	// object when we call finishAlign(...).
	BTDnaString& rf = tmprfdnastr_;
	rf.clear();
	edits_.clear();
	if(prevEdit != NULL) {
		prevEdit->toList(edits_);
		Edit::sort(edits_);
		assert(Edit::repOk(edits_, *seq_));
		Edit::toRef(*seq_, edits_, rf);
	} else {
		rf = *seq_;
	}
	// Sanity check: shouldn't add the same hit twice.  If this
	// happens, it may be because our zone Constraints are not set up
	// properly and erroneously return true from acceptable() when they
	// should return false in some cases.
	assert_eq(hits_.size(), ca_->curNumRanges());
	assert(hits_.insert(rf));
	if(!ca_->addOnTheFly(rf, topf, botf, topb, botb)) {
		return false;
	}
	assert_eq(hits_.size(), ca_->curNumRanges());
#ifndef NDEBUG
	// Sanity check that the topf/botf and topb/botb ranges really
	// correspond to the reference sequence aligned to
	{
		BTDnaString rfr;
		uint32_t tpf, btf, tpb, btb;
		tpf = btf = tpb = btb = 0;
		assert(ebwtFw_->contains(rf, &tpf, &btf));
		if(ebwtBw_ != NULL) {
			rfr = rf;
			rfr.reverse();
			assert(ebwtBw_->contains(rfr, &tpb, &btb));
			assert_eq(tpf, topf);
			assert_eq(btf, botf);
			assert_eq(tpb, topb);
			assert_eq(btb, botb);
		}
	}
#endif
	return true;
}

/**
 * Given a seed, search.  Assumes zone 0 = no backtracking.
 *
 * Return a list of Seed hits.
 * 1. Edits
 * 2. Bidirectional BWT range(s) on either end
 */
bool
SeedAligner::searchSeedBi(
	int step,             // depth into steps_[] array
	int depth,            // recursion depth
	uint32_t topf,        // top in BWT
	uint32_t botf,        // bot in BWT
	uint32_t topb,        // top in BWT'
	uint32_t botb,        // bot in BWT'
	SideLocus tloc,       // locus for top (perhaps unititialized)
	SideLocus bloc,       // locus for bot (perhaps unititialized)
	Constraint c0,        // constraints to enforce in seed zone 0
	Constraint c1,        // constraints to enforce in seed zone 1
	Constraint c2,        // constraints to enforce in seed zone 2
	Constraint overall,   // overall constraints to enforce
	DoublyLinkedList<Edit> *prevEdit  // previous edit
#if 0
	, const SABWOffTrack* prevOt // prev off tracker (if tracking started)
#endif
	)
{
	assert(s_ != NULL);
	const InstantiatedSeed& s = *s_;
	assert_gt(s.steps.size(), 0);
	assert(ebwtBw_ == NULL || ebwtBw_->eh().ftabChars() == ebwtFw_->eh().ftabChars());
#ifndef NDEBUG
	for(int i = 0; i < 4; i++) {
		assert(ebwtBw_ == NULL || ebwtBw_->fchr()[i] == ebwtFw_->fchr()[i]);
	}
#endif
	if(step == (int)s.steps.size()) {
		// Finished aligning seed
		assert(c0.acceptable());
		assert(c1.acceptable());
		assert(c2.acceptable());
		if(!reportHit(topf, botf, topb, botb, seq_->length(), prevEdit)) {
			return false; // Memory exhausted
		}
		return true;
	}
#ifndef NDEBUG
	if(depth > 0) {
		assert(botf - topf == 1 ||  bloc.valid());
		assert(botf - topf > 1  || !bloc.valid());
	}
#endif
	int off;
	uint32_t tp[4], bp[4]; // dest BW ranges for "prime" index
	if(step == 0) {
		// Just starting
		assert(prevEdit == NULL);
		assert(!tloc.valid());
		assert(!bloc.valid());
		off = s.steps[0];
		bool ltr = off > 0;
		off = abs(off)-1;
		// Check whether/how far we can jump using ftab or fchr
		int ftabLen = ebwtFw_->eh().ftabChars();
		if(ftabLen > 1 && ftabLen <= s.maxjump) {
			if(!ltr) {
				assert_geq(off+1, ftabLen-1);
				off = off - ftabLen + 1;
			}
			ebwtFw_->ftabLoHi(*seq_, off, false, topf, botf);
			#ifdef NDEBUG
			if(botf - topf == 0) return true;
			#endif
			#ifdef NDEBUG
			if(ebwtBw_ != NULL) {
				topb = ebwtBw_->ftabHi(*seq_, off);
				botb = topb + (botf-topf);
			}
			#else
			if(ebwtBw_ != NULL) {
				ebwtBw_->ftabLoHi(*seq_, off, false, topb, botb);
				assert_eq(botf-topf, botb-topb);
			}
			if(botf - topf == 0) return true;
			#endif
			step += ftabLen;
		} else if(s.maxjump > 0) {
			// Use fchr
			int c = (*seq_)[off];
			assert_range(0, 3, c);
			topf = topb = ebwtFw_->fchr()[c];
			botf = botb = ebwtFw_->fchr()[c+1];
			if(botf - topf == 0) return true;
			step++;
		} else {
			assert_eq(0, s.maxjump);
			topf = topb = 0;
			botf = botb = ebwtFw_->fchr()[4];
		}
		if(step == (int)s.steps.size()) {
			// Finished aligning seed
			assert(c0.acceptable());
			assert(c1.acceptable());
			assert(c2.acceptable());
			if(!reportHit(topf, botf, topb, botb, seq_->length(), prevEdit)) {
				return false; // Memory exhausted
			}
			return true;
		}
		nextLocsBi(tloc, bloc, topf, botf, topb, botb, step);
		assert(tloc.valid());
	} else assert(prevEdit != NULL);
	assert(tloc.valid());
	assert(botf - topf == 1 ||  bloc.valid());
	assert(botf - topf > 1  || !bloc.valid());
	assert_geq(step, 0);
	uint32_t t[4], b[4]; // dest BW ranges
	Constraint* zones[3] = { &c0, &c1, &c2 };
	ASSERT_ONLY(uint32_t lasttot = botf - topf);
	for(int i = step; i < (int)s.steps.size(); i++) {
		assert_gt(botf, topf);
		assert(botf - topf == 1 ||  bloc.valid());
		assert(botf - topf > 1  || !bloc.valid());
		assert(ebwtBw_ == NULL || botf-topf == botb-topb);
		assert(tloc.valid());
		off = s.steps[i];
		bool ltr = off > 0;
		const Ebwt* ebwt = ltr ? ebwtBw_ : ebwtFw_;
		assert(ebwt != NULL);
		if(ltr) {
			tp[0] = tp[1] = tp[2] = tp[3] = topf;
			bp[0] = bp[1] = bp[2] = bp[3] = botf;
		} else {
			tp[0] = tp[1] = tp[2] = tp[3] = topb;
			bp[0] = bp[1] = bp[2] = bp[3] = botb;
		}
		t[0] = t[1] = t[2] = t[3] = b[0] = b[1] = b[2] = b[3] = 0;
		if(bloc.valid()) {
			// Range delimited by tloc/bloc has size >1.  If size == 1,
			// we use a simpler query (see if(!bloc.valid()) blocks below)
			bwops_++;
			ebwt->mapBiLFEx(tloc, bloc, t, b, tp, bp);
			ASSERT_ONLY(uint32_t tot = (b[0]-t[0])+(b[1]-t[1])+(b[2]-t[2])+(b[3]-t[3]));
			ASSERT_ONLY(uint32_t totp = (bp[0]-tp[0])+(bp[1]-tp[1])+(bp[2]-tp[2])+(bp[3]-tp[3]));
			assert_eq(tot, totp);
			assert_leq(tot, lasttot);
			ASSERT_ONLY(lasttot = tot);
		}
		uint32_t *tf = ltr ? tp : t, *tb = ltr ? t : tp;
		uint32_t *bf = ltr ? bp : b, *bb = ltr ? b : bp;
		off = abs(off)-1;
		//
		bool leaveZone = s.zones[i].first < 0;
		//bool leaveZoneIns = zones_[i].second < 0;
		Constraint& cons    = *zones[abs(s.zones[i].first)];
		Constraint& insCons = *zones[abs(s.zones[i].second)];
		int c = (*seq_)[off];  assert_range(0, 4, c);
		int q = (*qual_)[off];
		// Is it legal for us to advance on characters other than 'c'?
		if(!(cons.mustMatch() && !overall.mustMatch()) || c == 4) {
			// There may be legal edits
			bool bail = false;
			if(!bloc.valid()) {
				// Range delimited by tloc/bloc has size 1
				uint32_t ntop = ltr ? topb : topf;
				bwops_++;
				int cc = ebwt->mapLF1(ntop, tloc);
				assert_range(-1, 3, cc);
				if(cc < 0) bail = true;
				else { t[cc] = ntop; b[cc] = ntop+1; }
			}
			if(!bail) {
				if((cons.canMismatch(q, *sc_) && overall.canMismatch(q, *sc_)) || c == 4) {
					Constraint oldCons = cons, oldOvCons = overall;
					SideLocus oldTloc = tloc, oldBloc = bloc;
					if(c != 4) {
						cons.chargeMismatch(q, *sc_);
						overall.chargeMismatch(q, *sc_);
					}
					// Can leave the zone as-is
					if(!leaveZone || (cons.acceptable() && overall.acceptable())) {
						for(int j = 0; j < 4; j++) {
							if(j == c || b[j] == t[j]) continue;
							// Potential mismatch
							nextLocsBi(tloc, bloc, tf[j], bf[j], tb[j], bb[j], i+1);
							int loff = off;
							if(!ltr) loff = (int)(s.steps.size() - loff - 1);
							assert(prevEdit == NULL || prevEdit->next == NULL);
							Edit edit(off, j, c, EDIT_TYPE_MM, false);
							DoublyLinkedList<Edit> editl;
							editl.payload = edit;
							if(prevEdit != NULL) {
								prevEdit->next = &editl;
								editl.prev = prevEdit;
							}
							assert(editl.next == NULL);
							bwedits_++;
							if(!searchSeedBi(
								i+1,     // depth into steps_[] array
								depth+1, // recursion depth
								tf[j],   // top in BWT
								bf[j],   // bot in BWT
								tb[j],   // top in BWT'
								bb[j],   // bot in BWT'
								tloc,    // locus for top (perhaps unititialized)
								bloc,    // locus for bot (perhaps unititialized)
								c0,      // constraints to enforce in seed zone 0
								c1,      // constraints to enforce in seed zone 1
								c2,      // constraints to enforce in seed zone 2
								overall, // overall constraints to enforce
								&editl))  // latest edit
							{
								return false;
							}
							if(prevEdit != NULL) prevEdit->next = NULL;
						}
					} else {
						// Not enough edits to make this path
						// non-redundant with other seeds
					}
					cons = oldCons;
					overall = oldOvCons;
					tloc = oldTloc;
					bloc = oldBloc;
				}
				if(cons.canGap() && overall.canGap()) {
					throw 1; // TODO
					int delEx = 0;
					if(cons.canDelete(delEx, *sc_) && overall.canDelete(delEx, *sc_)) {
						// Try delete
					}
					int insEx = 0;
					if(insCons.canInsert(insEx, *sc_) && overall.canInsert(insEx, *sc_)) {
						// Try insert
					}
				}
			} // if(!bail)
		}
		if(c == 4) {
			return true; // couldn't handle the N
		}
		if(leaveZone && (!cons.acceptable() || !overall.acceptable())) {
			// Not enough edits to make this path non-redundant with
			// other seeds
			return true;
		}
		if(!bloc.valid()) {
			assert(ebwtBw_ == NULL || bp[c] == tp[c]+1);
			// Range delimited by tloc/bloc has size 1
			uint32_t top = ltr ? topb : topf;
			bwops_++;
			t[c] = ebwt->mapLF1(top, tloc, c);
			if(t[c] == 0xffffffff) {
				return true;
			}
			assert_geq(t[c], ebwt->fchr()[c]);
			assert_lt(t[c],  ebwt->fchr()[c+1]);
			b[c] = t[c]+1;
			assert_gt(b[c], 0);
		}
		assert(ebwtBw_ == NULL || bf[c]-tf[c] == bb[c]-tb[c]);
		assert_leq(bf[c]-tf[c], lasttot);
		ASSERT_ONLY(lasttot = bf[c]-tf[c]);
		if(b[c] == t[c]) {
			return true;
		}
		topf = tf[c]; botf = bf[c];
		topb = tb[c]; botb = bb[c];
		if(i+1 == (int)s.steps.size()) {
			// Finished aligning seed
			assert(c0.acceptable());
			assert(c1.acceptable());
			assert(c2.acceptable());
			if(!reportHit(topf, botf, topb, botb, seq_->length(), prevEdit)) {
				return false; // Memory exhausted
			}
			return true;
		}
		nextLocsBi(tloc, bloc, tf[c], bf[c], tb[c], bb[c], i+1);
	}
	return true;
}

#ifdef ALIGNER_SEED_MAIN

#include <getopt.h>
#include <string>

/**
 * Parse an int out of optarg and enforce that it be at least 'lower';
 * if it is less than 'lower', than output the given error message and
 * exit with an error and a usage message.
 */
static int parseInt(const char *errmsg, const char *arg) {
	long l;
	char *endPtr = NULL;
	l = strtol(arg, &endPtr, 10);
	if (endPtr != NULL) {
		return (int32_t)l;
	}
	cerr << errmsg << endl;
	throw 1;
	return -1;
}

enum {
	ARG_NOFW = 256,
	ARG_NORC,
	ARG_MM,
	ARG_SHMEM,
	ARG_TESTS,
	ARG_RANDOM_TESTS,
	ARG_SEED
};

static const char *short_opts = "vCt";
static struct option long_opts[] = {
	{(char*)"verbose",  no_argument,       0, 'v'},
	{(char*)"color",    no_argument,       0, 'C'},
	{(char*)"timing",   no_argument,       0, 't'},
	{(char*)"nofw",     no_argument,       0, ARG_NOFW},
	{(char*)"norc",     no_argument,       0, ARG_NORC},
	{(char*)"mm",       no_argument,       0, ARG_MM},
	{(char*)"shmem",    no_argument,       0, ARG_SHMEM},
	{(char*)"tests",    no_argument,       0, ARG_TESTS},
	{(char*)"random",   required_argument, 0, ARG_RANDOM_TESTS},
	{(char*)"seed",     required_argument, 0, ARG_SEED},
};

static void printUsage(ostream& os) {
	os << "Usage: ac [options]* <index> <patterns>" << endl;
	os << "Options:" << endl;
	os << "  --mm                memory-mapped mode" << endl;
	os << "  --shmem             shared memory mode" << endl;
	os << "  --nofw              don't align forward-oriented read" << endl;
	os << "  --norc              don't align reverse-complemented read" << endl;
	os << "  -t/--timing         show timing information" << endl;
	os << "  -C/--color          colorspace mode" << endl;
	os << "  -v/--verbose        talkative mode" << endl;
}

bool gNorc = false;
bool gNofw = false;
bool gColor = false;
int gVerbose = 0;
int gGapBarrier = 1;
bool gColorExEnds = true;
int gSnpPhred = 30;
bool gReportOverhangs = true;

extern void aligner_seed_tests();
extern void aligner_random_seed_tests(
	int num_tests,
	uint32_t qslo,
	uint32_t qshi,
	bool color,
	uint32_t seed);

/**
 * A way of feeding simply tests to the seed alignment infrastructure.
 */
int main(int argc, char **argv) {
	bool useMm = false;
	bool useShmem = false;
	bool mmSweep = false;
	bool noRefNames = false;
	bool sanity = false;
	bool timing = false;
	int option_index = 0;
	int seed = 777;
	int next_option;
	do {
		next_option = getopt_long(
			argc, argv, short_opts, long_opts, &option_index);
		switch (next_option) {
			case 'v':       gVerbose = true; break;
			case 'C':       gColor   = true; break;
			case 't':       timing   = true; break;
			case ARG_NOFW:  gNofw    = true; break;
			case ARG_NORC:  gNorc    = true; break;
			case ARG_MM:    useMm    = true; break;
			case ARG_SHMEM: useShmem = true; break;
			case ARG_SEED:  seed = parseInt("", optarg); break;
			case ARG_TESTS: {
				aligner_seed_tests();
				aligner_random_seed_tests(
					100,     // num references
					100,   // queries per reference lo
					400,   // queries per reference hi
					false, // true -> generate colorspace reference/reads
					18);   // pseudo-random seed
				return 0;
			}
			case ARG_RANDOM_TESTS: {
				seed = parseInt("", optarg);
				aligner_random_seed_tests(
					100,   // num references
					100,   // queries per reference lo
					400,   // queries per reference hi
					false, // true -> generate colorspace reference/reads
					seed); // pseudo-random seed
				return 0;
			}
			case -1: break;
			default: {
				cerr << "Unknown option: " << (char)next_option << endl;
				printUsage(cerr);
				exit(1);
			}
		}
	} while(next_option != -1);
	char *reffn;
	if(optind >= argc) {
		cerr << "No reference; quitting..." << endl;
		return 1;
	}
	reffn = argv[optind++];
	if(optind >= argc) {
		cerr << "No reads; quitting..." << endl;
		return 1;
	}
	string ebwtBase(reffn);
	BitPairReference ref(
		ebwtBase,    // base path
		gColor,      // whether we expect it to be colorspace
		sanity,      // whether to sanity-check reference as it's loaded
		NULL,        // fasta files to sanity check reference against
		NULL,        // another way of specifying original sequences
		false,       // true -> infiles (2 args ago) contains raw seqs
		useMm,       // use memory mapping to load index?
		useShmem,    // use shared memory (not memory mapping)
		mmSweep,     // touch all the pages after memory-mapping the index
		gVerbose,    // verbose
		gVerbose);   // verbose but just for startup messages
	Timer *t = new Timer(cerr, "Time loading fw index: ", timing);
	Ebwt ebwtFw(
		ebwtBase,
		gColor,      // index is colorspace
		0,           // don't need entireReverse for fw index
		true,        // index is for the forward direction
		-1,          // offrate (irrelevant)
		useMm,       // whether to use memory-mapped files
		useShmem,    // whether to use shared memory
		mmSweep,     // sweep memory-mapped files
		!noRefNames, // load names?
		false,       // load SA sample?
		true,        // load ftab?
		true,        // load rstarts?
		NULL,        // reference map, or NULL if none is needed
		gVerbose,    // whether to be talkative
		gVerbose,    // talkative during initialization
		false,       // handle memory exceptions, don't pass them up
		sanity);
	delete t;
	t = new Timer(cerr, "Time loading bw index: ", timing);
	Ebwt ebwtBw(
		ebwtBase + ".rev",
		gColor,      // index is colorspace
		1,           // need entireReverse
		false,       // index is for the backward direction
		-1,          // offrate (irrelevant)
		useMm,       // whether to use memory-mapped files
		useShmem,    // whether to use shared memory
		mmSweep,     // sweep memory-mapped files
		!noRefNames, // load names?
		false,       // load SA sample?
		true,        // load ftab?
		false,       // load rstarts?
		NULL,        // reference map, or NULL if none is needed
		gVerbose,    // whether to be talkative
		gVerbose,    // talkative during initialization
		false,       // handle memory exceptions, don't pass them up
		sanity);
	delete t;
	for(int i = optind; i < argc; i++) {
	}
}
#endif