1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
|
#!/usr/bin/env perl
##
# Copyright 2011, Ben Langmead <blangmea@jhsph.edu>
#
# This file is part of Bowtie 2.
#
# Bowtie 2 is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Bowtie 2 is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
#
#
# The paired-end data is made by (a) changing to the reads subdirectory and (b)
# running 'perl simulate.pl --ref=../reference/lambda_virus.fa'.
#
#
# The long-read data is made by (a) changing to the reads subdirectory and (b)
# running 'perl simulate.pl --ref=../reference/lambda_virus.fa --long
# --unpaired --prefix=longreads'.
#
use strict;
use warnings;
use Carp;
use Math::Random qw(random_normal random_exponential);
use Getopt::Long;
use List::Util qw(max min);
my @fa_fn = (); # files with reference FASTA
my $rf = ""; # reference sequence
my $long = 0; # 1 -> generate long reads
my $paired = 1; # 1 -> generate paired-end reads
my $prefix = "reads"; # output files start with this string
my $nreads = undef; # # reads
my $rdlen_av = undef; # average to use when drawing from exponential
my $rdlen_exact = undef; # exact length for all reads, overrides randomness
my $rdlen_min = undef; # minimum read length (added to exponential draw)
my $frag_av = undef; # mean fragment len
my $frag_sd = undef; # s.d. to use when drawing frag len from normal dist
my $verbose = 0; # be talkative
GetOptions (
"fasta|reference=s" => \@fa_fn,
"long" => \$long,
"verbose" => \$verbose,
"nreads=i" => \$nreads,
"read-avg=i" => \$rdlen_av,
"read-len=i" => \$rdlen_exact,
"read-min=i" => \$rdlen_min,
"frag-avg=i" => \$frag_av,
"frag-sd=i" => \$frag_sd,
"unpaired" => sub { $paired = 0; },
"prefix=s" => \$prefix
) || die "Bad option";
scalar(@fa_fn) > 0 || die "Must specify at least one reference FASTA file with --fasta";
print STDERR "Loading reference files...\n";
for my $fn (@fa_fn) {
open(FN, $fn) || confess;
my $name = "";
while(<FN>) {
chomp;
$rf .= $_ if substr($_, 0, 1) ne ">";
}
close(FN);
}
my %revcompMap = (
"A" => "T", "T" => "A", "a" => "t", "t" => "a",
"C" => "G", "G" => "C", "c" => "g", "g" => "c",
"R" => "Y", "Y" => "R", "r" => "y", "y" => "r",
"M" => "K", "K" => "M", "m" => "k", "k" => "m",
"S" => "S", "W" => "W", "s" => "s", "w" => "w",
"B" => "V", "V" => "B", "b" => "v", "v" => "b",
"H" => "D", "D" => "H", "h" => "d", "d" => "h",
"N" => "N", "." => ".", "n" => "n" );
sub comp($) {
my $ret = $revcompMap{$_[0]} || confess "Can't reverse-complement '$_[0]'";
return $ret;
}
sub revcomp {
my ($ret) = @_;
$ret = reverse $ret;
for(0..length($ret)-1) { substr($ret, $_, 1) = comp(substr($ret, $_, 1)); }
return $ret;
}
$nreads = $nreads || 10000; # number of reads/end to generate
$rdlen_av = $rdlen_av || 75; # average when drawing from exponential
$rdlen_min = $rdlen_min || 40; # min read length (added to exponential draw)
$frag_av = $frag_av || 250; # mean fragment len
$frag_sd = $frag_sd || 45; # s.d. when drawing frag len from normal dist
my @fraglens = (); # fragment lengths (for paired)
my @readlens = (); # read/end lengths
if($long) {
$nreads = 6000;
$rdlen_av = 300;
$rdlen_min = 40;
}
sub rand_dna($) {
my $ret = "";
for(1..$_[0]) { $ret .= substr("ACGT", int(rand(4)), 1); }
return $ret;
}
#
# Mutate the reference
#
print STDERR "Adding single-base substitutions...\n";
my $nsnp = 0;
for(0..length($rf)-1) {
if(rand() < 0.0012) {
my $oldc = substr($rf, $_, 1);
substr($rf, $_, 1) = substr("ACGT", int(rand(4)), 1);
$nsnp++ if substr($rf, $_, 1) ne $oldc;
}
}
print STDERR "Adding microindels...\n";
my $microgap = 0;
{
my $newrf = "";
my $nins = int(length($rf) * 0.0005 + 0.5);
my $ndel = int(length($rf) * 0.0005 + 0.5);
$microgap = $nins + $ndel;
my %indel = ();
for(1..$nins) {
my $off = int(rand(length($rf)));
$indel{$off}{ty} = "ins";
$indel{$off}{len} = int(random_exponential(1, 3))+1;
}
for(1..$ndel) {
my $off = int(rand(length($rf)));
$indel{$off}{ty} = "del";
$indel{$off}{len} = int(random_exponential(1, 3))+1;
}
my $lasti = 0;
for my $rfi (sort {$a <=> $b} keys %indel) {
if($rfi > $lasti) {
$newrf .= substr($rf, $lasti, $rfi - $lasti);
$lasti = $rfi;
}
if($indel{$rfi}{ty} eq "ins") {
$newrf .= rand_dna($indel{$rfi}{len});
} else {
$lasti += $indel{$rfi}{len};
}
}
if($lasti < length($rf)-1) {
$newrf .= substr($rf, $lasti, length($rf) - $lasti - 1);
}
$rf = $newrf;
}
print STDERR "Adding larger rearrangements...\n";
my $nrearr = int(random_exponential(1, 3)+1);
for(0..$nrearr) {
my $break = int(rand(length($rf)));
my $before = substr($rf, 0, $break);
my $after = substr($rf, $break);
$after = revcomp($after) if int(rand()) == 0;
$rf = $after.$before;
}
print STDERR "Added $nsnp SNPs\n";
print STDERR "Added $microgap Microindels\n";
print STDERR "Added $nrearr Rearrangements\n";
#
# Simulate reads
#
print STDERR "Picking read and fragment lengths...\n";
# Pick random read lengths
if(defined($rdlen_exact)) {
@readlens = ($rdlen_exact) x ($nreads * ($paired ? 2 : 1));
} else {
@readlens = random_exponential($nreads * ($paired ? 2 : 1), $rdlen_av);
@readlens = map int, @readlens;
@readlens = map { int($_ + $rdlen_min) } @readlens;
}
if($paired) {
# Pick random fragment and read lengths
@fraglens = random_normal($nreads, $frag_av, $frag_sd);
@fraglens = map int, @fraglens;
for(my $i = 0; $i < scalar(@readlens); $i += 2) {
$fraglens[$i/2] = max($fraglens[$i/2], $readlens[$i] + $readlens[$i+1]);
}
}
sub rand_quals($) {
my $ret = "";
my $upper = (rand() < 0.2 ? 11 : 40);
$upper = 4 if rand() < 0.02;
for(1..$_[0]) {
$ret .= chr(33+int(rand($upper)));
}
return $ret;
}
sub add_seq_errs($$) {
my($rd, $qu) = @_;
my $origLen = length($rd);
for(0..length($rd)-1) {
my $c = substr($rd, $_, 1);
my $q = substr($qu, $_, 1);
$q = ord($q)-33;
my $p = 10 ** (-0.1 * $q);
if(rand() < $p) {
$c = substr("ACGTNNNNNN", int(rand(10)), 1);
}
substr($rd, $_, 1) = $c;
substr($qu, $_, 1) = $q;
}
length($rd) == $origLen || die;
return $rd;
}
# Now simulate
print STDERR "Simulating reads...\n";
my $rflen = length($rf);
if($paired) {
open(RD1, ">${prefix}_1.fq") || die;
open(RD2, ">${prefix}_2.fq") || die;
for(my $i = 0; $i < scalar(@fraglens); $i++) {
# Extract fragment
my $flen = $fraglens[$i];
my $off = int(rand($rflen - ($flen-1)));
my $fstr = substr($rf, $off, $flen);
# Check if it has too many Ns
my %ccnt = ();
for my $j (1..$flen) {
my $c = uc substr($fstr, $j, 1);
$ccnt{tot}++;
$ccnt{non_acgt}++ if ($c ne "A" && $c ne "C" && $c ne "G" && $c ne "T");
$ccnt{$c}++;
}
# Skip if it has >10% Ns
if(1.0 * $ccnt{non_acgt} / $ccnt{tot} > 0.10) {
$i--;
next;
}
# Possibly reverse complement
$fstr = revcomp($fstr) if (int(rand(2)) == 0);
# Get reads 1 and 2
my $rdlen1 = min($readlens[2*$i], $flen);
my $rdlen2 = min($readlens[2*$i+1], $flen);
my $rd1 = substr($fstr, 0, $rdlen1);
my $rd2 = substr($fstr, length($fstr)-$rdlen2);
length($rd2) == $rdlen2 || die "Got ".length($rd2)." expected $rdlen2";
# Reverse complement 2 to simulate --fr orientation
$rd2 = revcomp($rd2);
# Generate random quality values
my $qu1 = rand_quals($rdlen1);
$rd1 = add_seq_errs($rd1, $qu1);
length($rd1) == length($qu1) || die;
my $qu2 = rand_quals($rdlen2);
$rd2 = add_seq_errs($rd2, $qu2);
length($rd2) == length($qu2) || die;
# Print
print RD1 "\@r".($i+1)."\n$rd1\n+\n$qu1\n";
print RD2 "\@r".($i+1)."\n$rd2\n+\n$qu2\n";
}
close(RD1);
close(RD2);
print STDERR "Made pairs: reads_1.fq/reads_2.fq\n";
} else {
open(RD1, ">${prefix}.fq") || die;
for(my $i = 0; $i < scalar(@readlens); $i++) {
# Extract fragment
my $rdlen = $readlens[$i];
my $off = int(rand($rflen - ($rdlen-1)));
my $rd = substr($rf, $off, $rdlen);
# Check if it has too many Ns
my %ccnt = ();
for my $j (1..$rdlen) {
my $c = uc substr($rd, $j, 1);
$ccnt{tot}++;
$ccnt{non_acgt}++ if ($c ne "A" && $c ne "C" && $c ne "G" && $c ne "T");
$ccnt{$c}++;
}
# Skip if it has >10% Ns
if(1.0 * $ccnt{non_acgt} / $ccnt{tot} > 0.10) {
$i--;
next;
}
length($rd) == $rdlen || die;
# Possibly reverse complement
$rd = revcomp($rd) if int(rand(2)) == 0;
# Generate random quality values
my $qu = rand_quals($rdlen);
length($rd) == length($qu) || die "length(seq) = ".length($rd).", length(qual) = ".length($qu);
$rd = add_seq_errs($rd, $qu);
length($rd) == length($qu) || die "length(seq) = ".length($rd).", length(qual) = ".length($qu);
# Print
print RD1 "\@r".($i+1)."\n$rd\n+\n$qu\n";
}
close(RD1);
print STDERR "Made unpaired reads: $prefix.fq\n";
}
print STDERR "DONE\n";
|