1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
|
/*
* Copyright 2011, Ben Langmead <blangmea@jhsph.edu>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#include <iostream>
#include "scoring.h"
using namespace std;
/**
* Return true iff a read of length 'rdlen' passes the score filter, i.e.,
* has enough characters to rise above the minimum score threshold.
*/
bool Scoring::scoreFilter(
int64_t minsc,
size_t rdlen) const
{
int64_t sc = (int64_t)(rdlen * match(30));
return sc >= minsc;
}
/**
* Given the score floor for valid alignments and the length of the read,
* calculate the maximum possible number of read gaps that could occur in a
* valid alignment.
*/
int Scoring::maxReadGaps(
int64_t minsc,
size_t rdlen) const
{
// Score if all characters match. TODO: remove assumption that match bonus
// is independent of quality value.
int64_t sc = (int64_t)(rdlen * match(30));
assert_geq(sc, minsc);
// Now convert matches to read gaps until sc calls below minsc
bool first = true;
int num = 0;
while(sc >= minsc) {
if(first) {
first = false;
// Subtract both penalties
sc -= readGapOpen();
} else {
// Subtract just the extension penalty
sc -= readGapExtend();
}
num++;
}
assert_gt(num, 0);
return num-1;
}
/**
* Given the score floor for valid alignments and the length of the read,
* calculate the maximum possible number of reference gaps that could occur
* in a valid alignment.
*/
int Scoring::maxRefGaps(
int64_t minsc,
size_t rdlen) const
{
// Score if all characters match. TODO: remove assumption that match bonus
// is independent of quality value.
int64_t sc = (int64_t)(rdlen * match(30));
assert_geq(sc, minsc);
// Now convert matches to read gaps until sc calls below minsc
bool first = true;
int num = 0;
while(sc >= minsc) {
sc -= match(30);
if(first) {
first = false;
// Subtract both penalties
sc -= refGapOpen();
} else {
// Subtract just the extension penalty
sc -= refGapExtend();
}
num++;
}
assert_gt(num, 0);
return num-1;
}
/**
* Given a read sequence, return true iff the read passes the N filter.
* The N filter rejects reads with more than the number of Ns.
*/
bool Scoring::nFilter(const BTDnaString& rd, size_t& ns) const {
size_t rdlen = rd.length();
size_t maxns = nCeil.f<size_t>((double)rdlen);
assert_geq(rd.length(), 0);
for(size_t i = 0; i < rdlen; i++) {
if(rd[i] == 4) {
ns++;
if(ns > maxns) {
return false; // doesn't pass
}
}
}
return true; // passes
}
/**
* Given a read sequence, return true iff the read passes the N filter.
* The N filter rejects reads with more than the number of Ns.
*
* For paired-end reads, there is a question of how to apply the filter.
* The filter could be applied to both mates separately, which might then
* prevent paired-end alignment. Or the filter could be applied to the
* reads as though they're concatenated together. The latter approach has
* pros and cons. The pro is that we can use paired-end information to
* recover alignments for mates that would not have passed the N filter on
* their own. The con is that we might not want to do that, since the
* non-N portion of the bad mate might contain particularly unreliable
* information.
*/
void Scoring::nFilterPair(
const BTDnaString* rd1, // mate 1
const BTDnaString* rd2, // mate 2
size_t& ns1, // # Ns in mate 1
size_t& ns2, // # Ns in mate 2
bool& filt1, // true -> mate 1 rejected by filter
bool& filt2) // true -> mate 2 rejected by filter
const
{
// Both fail to pass by default
filt1 = filt2 = false;
if(rd1 != NULL && rd2 != NULL && ncatpair) {
size_t rdlen1 = rd1->length();
size_t rdlen2 = rd2->length();
size_t maxns = nCeil.f<size_t>((double)(rdlen1 + rdlen2));
for(size_t i = 0; i < rdlen1; i++) {
if((*rd1)[i] == 4) ns1++;
if(ns1 > maxns) {
// doesn't pass
return;
}
}
for(size_t i = 0; i < rdlen2; i++) {
if((*rd2)[i] == 4) ns2++;
if(ns2 > maxns) {
// doesn't pass
return;
}
}
// Both pass
filt1 = filt2 = true;
} else {
if(rd1 != NULL) filt1 = nFilter(*rd1, ns1);
if(rd2 != NULL) filt2 = nFilter(*rd2, ns2);
}
}
#ifdef SCORING_MAIN
int main() {
{
cout << "Case 1: Simple 1 ... ";
Scoring sc = Scoring::base1();
assert_eq(COST_MODEL_CONSTANT, sc.matchType);
assert_eq(0, sc.maxRefGaps(0, 10)); // 10 - 1 - 15 = -6
assert_eq(0, sc.maxRefGaps(0, 11)); // 11 - 1 - 15 = -5
assert_eq(0, sc.maxRefGaps(0, 12)); // 12 - 1 - 15 = -4
assert_eq(0, sc.maxRefGaps(0, 13)); // 13 - 1 - 15 = -3
assert_eq(0, sc.maxRefGaps(0, 14)); // 14 - 1 - 15 = -2
assert_eq(0, sc.maxRefGaps(0, 15)); // 15 - 1 - 15 = -1
assert_eq(1, sc.maxRefGaps(0, 16)); // 16 - 1 - 15 = 0
assert_eq(1, sc.maxRefGaps(0, 17)); // 17 - 2 - 19 = -4
assert_eq(1, sc.maxRefGaps(0, 18)); // 18 - 2 - 19 = -3
assert_eq(1, sc.maxRefGaps(0, 19)); // 19 - 2 - 19 = -2
assert_eq(1, sc.maxRefGaps(0, 20)); // 20 - 2 - 19 = -1
assert_eq(2, sc.maxRefGaps(0, 21)); // 21 - 2 - 19 = 0
assert_eq(0, sc.maxReadGaps(0, 10)); // 10 - 0 - 15 = -5
assert_eq(0, sc.maxReadGaps(0, 11)); // 11 - 0 - 15 = -4
assert_eq(0, sc.maxReadGaps(0, 12)); // 12 - 0 - 15 = -3
assert_eq(0, sc.maxReadGaps(0, 13)); // 13 - 0 - 15 = -2
assert_eq(0, sc.maxReadGaps(0, 14)); // 14 - 0 - 15 = -1
assert_eq(1, sc.maxReadGaps(0, 15)); // 15 - 0 - 15 = 0
assert_eq(1, sc.maxReadGaps(0, 16)); // 16 - 0 - 19 = -3
assert_eq(1, sc.maxReadGaps(0, 17)); // 17 - 0 - 19 = -2
assert_eq(1, sc.maxReadGaps(0, 18)); // 18 - 0 - 19 = -1
assert_eq(2, sc.maxReadGaps(0, 19)); // 19 - 0 - 19 = 0
assert_eq(2, sc.maxReadGaps(0, 20)); // 20 - 0 - 23 = -3
assert_eq(2, sc.maxReadGaps(0, 21)); // 21 - 0 - 23 = -2
// N ceiling: const=2, linear=0.1
assert_eq(1, sc.nCeil(1));
assert_eq(2, sc.nCeil(3));
assert_eq(2, sc.nCeil(5));
assert_eq(2, sc.nCeil(7));
assert_eq(2, sc.nCeil(9));
assert_eq(3, sc.nCeil(10));
for(int i = 0; i < 30; i++) {
assert_eq(3, sc.n(i));
assert_eq(3, sc.mm(i));
}
assert_eq(5, sc.gapbar);
assert_eq(-1, sc.rowlo);
assert(!sc.rowFirst);
cout << "PASSED" << endl;
}
{
cout << "Case 2: Simple 2 ... ";
Scoring sc(
4, // reward for a match
COST_MODEL_QUAL, // how to penalize mismatches
0, // constant if mm pelanty is a constant
30, // penalty for nuc mm in decoded colorspace als
-3.0f, // constant coeff for minimum score
-3.0f, // linear coeff for minimum score
DEFAULT_FLOOR_CONST, // constant coeff for score floor
DEFAULT_FLOOR_LINEAR, // linear coeff for score floor
3.0f, // max # ref Ns allowed in alignment; const coeff
0.4f, // max # ref Ns allowed in alignment; linear coeff
COST_MODEL_QUAL, // how to penalize Ns in the read
0, // constant if N pelanty is a constant
true, // whether to concatenate mates before N filtering
25, // constant coeff for cost of gap in the read
25, // constant coeff for cost of gap in the ref
10, // coeff of linear term for cost of gap in read
10, // coeff of linear term for cost of gap in ref
5, // 5 rows @ top/bot diagonal-entrance-only
-1, // no restriction on row
false // score prioritized over row
);
assert_eq(COST_MODEL_CONSTANT, sc.matchType);
assert_eq(4, sc.matchConst);
assert_eq(COST_MODEL_QUAL, sc.mmcostType);
assert_eq(COST_MODEL_QUAL, sc.npenType);
assert_eq(0, sc.maxRefGaps(0, 8)); // 32 - 4 - 35 = -7
assert_eq(0, sc.maxRefGaps(0, 9)); // 36 - 4 - 35 = -3
assert_eq(1, sc.maxRefGaps(0, 10)); // 40 - 4 - 35 = 1
assert_eq(1, sc.maxRefGaps(0, 11)); // 44 - 8 - 45 = -9
assert_eq(1, sc.maxRefGaps(0, 12)); // 48 - 8 - 45 = -5
assert_eq(1, sc.maxRefGaps(0, 13)); // 52 - 8 - 45 = -1
assert_eq(2, sc.maxRefGaps(0, 14)); // 56 - 8 - 45 = 3
assert_eq(0, sc.maxReadGaps(0, 8)); // 32 - 0 - 35 = -3
assert_eq(1, sc.maxReadGaps(0, 9)); // 36 - 0 - 35 = 1
assert_eq(1, sc.maxReadGaps(0, 10)); // 40 - 0 - 45 = -5
assert_eq(1, sc.maxReadGaps(0, 11)); // 44 - 0 - 45 = -1
assert_eq(2, sc.maxReadGaps(0, 12)); // 48 - 0 - 45 = 3
assert_eq(2, sc.maxReadGaps(0, 13)); // 52 - 0 - 55 = -3
assert_eq(3, sc.maxReadGaps(0, 14)); // 56 - 0 - 55 = 1
// N ceiling: const=3, linear=0.4
assert_eq(1, sc.nCeil(1));
assert_eq(2, sc.nCeil(2));
assert_eq(3, sc.nCeil(3));
assert_eq(4, sc.nCeil(4));
assert_eq(5, sc.nCeil(5));
assert_eq(5, sc.nCeil(6));
assert_eq(5, sc.nCeil(7));
assert_eq(6, sc.nCeil(8));
assert_eq(6, sc.nCeil(9));
for(int i = 0; i < 256; i++) {
assert_eq(i, sc.n(i));
assert_eq(i, sc.mm(i));
}
assert_eq(5, sc.gapbar);
assert_eq(-1, sc.rowlo);
assert(!sc.rowFirst);
cout << "PASSED" << endl;
}
}
#endif /*def SCORING_MAIN*/
|