1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
|
/*
* Copyright 2011, Ben Langmead <blangmea@jhsph.edu>
*
* This file is part of Bowtie 2.
*
* Bowtie 2 is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* Bowtie 2 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Bowtie 2. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef SCORING_H_
#define SCORING_H_
#include <limits>
#include "qual.h"
#include "simple_func.h"
// Default type of bonus to added for matches
#define DEFAULT_MATCH_BONUS_TYPE COST_MODEL_CONSTANT
// When match bonus type is constant, use this constant
#define DEFAULT_MATCH_BONUS 0
// Same settings but different defaults for --local mode
#define DEFAULT_MATCH_BONUS_TYPE_LOCAL COST_MODEL_CONSTANT
#define DEFAULT_MATCH_BONUS_LOCAL 2
// Default type of penalty to assess against mismatches
#define DEFAULT_MM_PENALTY_TYPE COST_MODEL_QUAL
// Default type of penalty to assess against mismatches
#define DEFAULT_MM_PENALTY_TYPE_IGNORE_QUALS COST_MODEL_CONSTANT
// When mismatch penalty type is constant, use this constant
#define DEFAULT_MM_PENALTY_MAX 6
#define DEFAULT_MM_PENALTY_MIN 2
// Default type of penalty to assess against mismatches
#define DEFAULT_N_PENALTY_TYPE COST_MODEL_CONSTANT
// When mismatch penalty type is constant, use this constant
#define DEFAULT_N_PENALTY 1
// Constant coefficient b in linear function f(x) = ax + b determining
// minimum valid score f when read length is x
#define DEFAULT_MIN_CONST (-0.6f)
// Linear coefficient a
#define DEFAULT_MIN_LINEAR (-0.6f)
// Different defaults for --local mode
#define DEFAULT_MIN_CONST_LOCAL (0.0f)
#define DEFAULT_MIN_LINEAR_LOCAL (10.0f)
// Constant coefficient b in linear function f(x) = ax + b determining
// maximum permitted number of Ns f in a read before it is filtered &
// the maximum number of Ns in an alignment before it is considered
// invalid.
#define DEFAULT_N_CEIL_CONST 0.0f
// Linear coefficient a
#define DEFAULT_N_CEIL_LINEAR 0.15f
// Default for whether to concatenate mates before the N filter (as opposed to
// filting each mate separately)
#define DEFAULT_N_CAT_PAIR false
// Default read gap penalties for when homopolymer calling is reliable
#define DEFAULT_READ_GAP_CONST 5
#define DEFAULT_READ_GAP_LINEAR 3
// Default read gap penalties for when homopolymer calling is not reliable
#define DEFAULT_READ_GAP_CONST_BADHPOLY 3
#define DEFAULT_READ_GAP_LINEAR_BADHPOLY 1
// Default reference gap penalties for when homopolymer calling is reliable
#define DEFAULT_REF_GAP_CONST 5
#define DEFAULT_REF_GAP_LINEAR 3
// Default reference gap penalties for when homopolymer calling is not reliable
#define DEFAULT_REF_GAP_CONST_BADHPOLY 3
#define DEFAULT_REF_GAP_LINEAR_BADHPOLY 1
enum {
COST_MODEL_ROUNDED_QUAL = 1,
COST_MODEL_QUAL,
COST_MODEL_CONSTANT
};
/**
* How to penalize various types of sequence dissimilarity, and other settings
* that govern how dynamic programming tables should be filled in and how to
* backtrace to find solutions.
*/
class Scoring {
/**
* Init an array that maps quality to penalty or bonus according to 'type'
* and 'cons'
*/
template<typename T>
void initPens(
T *pens, // array to fill
int type, // penalty type; qual | rounded qual | constant
int consMin, // constant for when penalty type is constant
int consMax) // constant for when penalty type is constant
{
if(type == COST_MODEL_ROUNDED_QUAL) {
for(int i = 0; i < 256; i++) {
pens[i] = (T)qualRounds[i];
}
} else if(type == COST_MODEL_QUAL) {
assert_neq(consMin, 0);
assert_neq(consMax, 0);
for(int i = 0; i < 256; i++) {
int ii = min(i, 40); // TODO: Bit hacky, this
float frac = (float)ii / 40.0f;
pens[i] = consMin + (T)(frac * (consMax-consMin));
assert_gt(pens[i], 0);
//if(pens[i] == 0) {
// pens[i] = ((consMax > 0) ? (T)1 : (T)-1);
//}
}
} else if(type == COST_MODEL_CONSTANT) {
for(int i = 0; i < 256; i++) {
pens[i] = (T)consMax;
}
} else {
throw 1;
}
}
public:
Scoring(
int mat, // reward for a match
int mmcType, // how to penalize mismatches
int mmpMax_, // maximum mismatch penalty
int mmpMin_, // minimum mismatch penalty
const SimpleFunc& scoreMin_, // minimum score for valid alignment; const coeff
const SimpleFunc& nCeil_, // max # ref Ns allowed in alignment; const coeff
int nType, // how to penalize Ns in the read
int n, // constant if N pelanty is a constant
bool ncat, // whether to concatenate mates before N filtering
int rdGpConst, // constant coeff for cost of gap in the read
int rfGpConst, // constant coeff for cost of gap in the ref
int rdGpLinear, // coeff of linear term for cost of gap in read
int rfGpLinear, // coeff of linear term for cost of gap in ref
int gapbar_, // # rows at top/bot can only be entered diagonally
int64_t rowlo_, // min row idx to backtrace from; -1 = no limit
bool rowFirst_) // sort results first by row then by score?
{
matchType = COST_MODEL_CONSTANT;
matchConst = mat;
mmcostType = mmcType;
mmpMax = mmpMax_;
mmpMin = mmpMin_;
scoreMin = scoreMin_;
nCeil = nCeil_;
npenType = nType;
npen = n;
ncatpair = ncat;
rdGapConst = rdGpConst;
rfGapConst = rfGpConst;
rdGapLinear = rdGpLinear;
rfGapLinear = rfGpLinear;
qualsMatter_ = mmcostType != COST_MODEL_CONSTANT;
gapbar = gapbar_;
rowlo = rowlo_;
rowFirst = rowFirst_;
monotone = matchType == COST_MODEL_CONSTANT && matchConst == 0;
initPens<int>(mmpens, mmcostType, mmpMin_, mmpMax_);
initPens<int>(npens, npenType, npen, npen);
initPens<float>(matchBonuses, matchType, matchConst, matchConst);
assert(repOk());
}
/**
* Set a constant match bonus.
*/
void setMatchBonus(int bonus) {
matchType = COST_MODEL_CONSTANT;
matchConst = bonus;
initPens<float>(matchBonuses, matchType, matchConst, matchConst);
assert(repOk());
}
/**
* Set the mismatch penalty.
*/
void setMmPen(int mmType, int mmpMax_, int mmpMin_) {
mmcostType = mmType;
mmpMax = mmpMax;
mmpMin = mmpMin;
initPens<int>(mmpens, mmcostType, mmpMin, mmpMax);
}
/**
* Set the N penalty.
*/
void setNPen(int nType, int n) {
npenType = nType;
npen = n;
initPens<int>(npens, npenType, npen, npen);
}
/**
* Check that scoring scheme is internally consistent.
*/
bool repOk() const {
assert_geq(matchConst, 0);
assert_gt(rdGapConst, 0);
assert_gt(rdGapLinear, 0);
assert_gt(rfGapConst, 0);
assert_gt(rfGapLinear, 0);
return true;
}
/**
* Return a linear function of x where 'cnst' is the constant coefficiant
* and 'lin' is the linear coefficient.
*/
static float linearFunc(int64_t x, float cnst, float lin) {
return (float)((double)cnst + ((double)lin * x));
}
/**
* Return the penalty incurred by a mismatch at an alignment column
* with read character 'rdc' reference mask 'refm' and quality 'q'.
*
* qs should be clamped to 63 on the high end before this query.
*/
inline int mm(int rdc, int refm, int q) const {
assert_range(0, 255, q);
return (rdc > 3 || refm > 15) ? npens[q] : mmpens[q];
}
/**
* Return the score of the given read character with the given quality
* aligning to the given reference mask. Take Ns into account.
*/
inline int score(int rdc, int refm, int q) const {
assert_range(0, 255, q);
if(rdc > 3 || refm > 15) {
return -npens[q];
}
if((refm & (1 << rdc)) != 0) {
return (int)matchBonuses[q];
} else {
return -mmpens[q];
}
}
/**
* Return the score of the given read character with the given quality
* aligning to the given reference mask. Take Ns into account. Increment
* a counter if it's an N.
*/
inline int score(int rdc, int refm, int q, int& ns) const {
assert_range(0, 255, q);
if(rdc > 3 || refm > 15) {
ns++;
return -npens[q];
}
if((refm & (1 << rdc)) != 0) {
return (int)matchBonuses[q];
} else {
return -mmpens[q];
}
}
/**
* Return the penalty incurred by a mismatch at an alignment column
* with read character 'rdc' and quality 'q'. We assume the
* reference character is non-N.
*/
inline int mm(int rdc, int q) const {
assert_range(0, 255, q);
return (rdc > 3) ? npens[q] : mmpens[q];
}
/**
* Return the marginal penalty incurred by a mismatch at a read
* position with quality 'q'.
*/
inline int mm(int q) const {
assert_geq(q, 0);
return q < 255 ? mmpens[q] : mmpens[255];
}
/**
* Return the marginal penalty incurred by a mismatch at a read
* position with quality 30.
*/
inline int64_t match() const {
return match(30);
}
/**
* Return the marginal penalty incurred by a mismatch at a read
* position with quality 'q'.
*/
inline int64_t match(int q) const {
assert_geq(q, 0);
return (int64_t)((q < 255 ? matchBonuses[q] : matchBonuses[255]) + 0.5f);
}
/**
* Return the best score achievable by a read of length 'rdlen'.
*/
inline int64_t perfectScore(size_t rdlen) const {
if(monotone) {
return 0;
} else {
return rdlen * match(30);
}
}
/**
* Return true iff the penalities are such that two reads with the
* same sequence but different qualities might yield different
* alignments.
*/
inline bool qualitiesMatter() const { return qualsMatter_; }
/**
* Return the marginal penalty incurred by an N mismatch at a read
* position with quality 'q'.
*/
inline int n(int q) const {
assert_geq(q, 0);
return q < 255 ? npens[q] : npens[255];
}
/**
* Return the marginal penalty incurred by a gap in the read,
* given that this is the 'ext'th extension of the gap (0 = open,
* 1 = first, etc).
*/
inline int ins(int ext) const {
assert_geq(ext, 0);
if(ext == 0) return readGapOpen();
return readGapExtend();
}
/**
* Return the marginal penalty incurred by a gap in the reference,
* given that this is the 'ext'th extension of the gap (0 = open,
* 1 = first, etc).
*/
inline int del(int ext) const {
assert_geq(ext, 0);
if(ext == 0) return refGapOpen();
return refGapExtend();
}
/**
* Return true iff a read of length 'rdlen' passes the score filter, i.e.,
* has enough characters to rise above the minimum score threshold.
*/
bool scoreFilter(
int64_t minsc,
size_t rdlen) const;
/**
* Given the score floor for valid alignments and the length of the read,
* calculate the maximum possible number of read gaps that could occur in a
* valid alignment.
*/
int maxReadGaps(
int64_t minsc,
size_t rdlen) const;
/**
* Given the score floor for valid alignments and the length of the read,
* calculate the maximum possible number of reference gaps that could occur
* in a valid alignment.
*/
int maxRefGaps(
int64_t minsc,
size_t rdlen) const;
/**
* Given a read sequence, return true iff the read passes the N filter.
* The N filter rejects reads with more than the number of Ns calculated by
* taking nCeilConst + nCeilLinear * read length.
*/
bool nFilter(const BTDnaString& rd, size_t& ns) const;
/**
* Given a read sequence, return true iff the read passes the N filter.
* The N filter rejects reads with more than the number of Ns calculated by
* taking nCeilConst + nCeilLinear * read length.
*
* For paired-end reads, there is a question of how to apply the filter.
* The filter could be applied to both mates separately, which might then
* prevent paired-end alignment. Or the filter could be applied to the
* reads as though they're concatenated together. The latter approach has
* pros and cons. The pro is that we can use paired-end information to
* recover alignments for mates that would not have passed the N filter on
* their own. The con is that we might not want to do that, since the
* non-N portion of the bad mate might contain particularly unreliable
* information.
*/
void nFilterPair(
const BTDnaString* rd1, // mate 1
const BTDnaString* rd2, // mate 2
size_t& ns1, // # Ns in mate 1
size_t& ns2, // # Ns in mate 2
bool& filt1, // true -> mate 1 rejected by filter
bool& filt2) // true -> mate 2 rejected by filter
const;
/**
* The penalty associated with opening a new read gap.
*/
inline int readGapOpen() const {
return rdGapConst + rdGapLinear;
}
/**
* The penalty associated with opening a new ref gap.
*/
inline int refGapOpen() const {
return rfGapConst + rfGapLinear;
}
/**
* The penalty associated with extending a read gap by one character.
*/
inline int readGapExtend() const {
return rdGapLinear;
}
/**
* The penalty associated with extending a ref gap by one character.
*/
inline int refGapExtend() const {
return rfGapLinear;
}
int matchType; // how to reward matches
int matchConst; // reward for a match
int mmcostType; // based on qual? rounded? just a constant?
int mmpMax; // maximum mismatch penalty
int mmpMin; // minimum mismatch penalty
SimpleFunc scoreMin; // minimum score for valid alignment, constant coeff
SimpleFunc nCeil; // max # Ns involved in alignment, constant coeff
int npenType; // N: based on qual? rounded? just a constant?
int npen; // N: if mmcosttype=constant, this is the const
bool ncatpair; // true -> do N filtering on concated pair
int rdGapConst; // constant term coeffecient in extend cost
int rfGapConst; // constant term coeffecient in extend cost
int rdGapLinear; // linear term coeffecient in extend cost
int rfGapLinear; // linear term coeffecient in extend cost
int gapbar; // # rows at top/bot can only be entered diagonally
int64_t rowlo; // min row idx to backtrace from; -1 = no limit
bool rowFirst; // sort results first by row then by score?
bool monotone; // scores can only go down?
float matchBonuses[256]; // map from qualities to match bonus
int mmpens[256]; // map from qualities to mm penalty
int npens[256]; // map from N qualities to penalty
static Scoring base1() {
const double DMAX = std::numeric_limits<double>::max();
SimpleFunc scoreMin(SIMPLE_FUNC_LINEAR, 0.0f, DMAX, 37.0f, 0.3f);
SimpleFunc nCeil(SIMPLE_FUNC_LINEAR, 0.0f, DMAX, 2.0f, 0.1f);
return Scoring(
1, // reward for a match
COST_MODEL_CONSTANT, // how to penalize mismatches
3, // max mismatch pelanty
3, // min mismatch pelanty
scoreMin, // score min: 37 + 0.3x
nCeil, // n ceiling: 2 + 0.1x
COST_MODEL_CONSTANT, // how to penalize Ns in the read
3, // constant if N pelanty is a constant
false, // concatenate mates before N filtering?
11, // constant coeff for gap in read
11, // constant coeff for gap in ref
4, // linear coeff for gap in read
4, // linear coeff for gap in ref
5, // 5 rows @ top/bot diagonal-entrance-only
-1, // no restriction on row
false); // score prioritized over row
}
protected:
bool qualsMatter_;
};
#endif /*SCORING_H_*/
|