File: aligner_seed.h

package info (click to toggle)
bowtie2 2.2.4-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 20,280 kB
  • ctags: 5,481
  • sloc: cpp: 58,605; perl: 1,190; sh: 1,036; makefile: 370; ansic: 122; python: 95
file content (1648 lines) | stat: -rw-r--r-- 45,652 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
/*
 * Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
 *
 * This file is part of Bowtie 2.
 *
 * Bowtie 2 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Bowtie 2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef ALIGNER_SEED_H_
#define ALIGNER_SEED_H_

#include <iostream>
#include <utility>
#include <limits>
#include "qual.h"
#include "ds.h"
#include "sstring.h"
#include "alphabet.h"
#include "edit.h"
#include "read.h"
// Threading is necessary to synchronize the classes that dump
// intermediate alignment results to files.  Otherwise, all data herein
// is constant and shared, or per-thread.
#include "threading.h"
#include "aligner_result.h"
#include "aligner_cache.h"
#include "scoring.h"
#include "mem_ids.h"
#include "simple_func.h"
#include "btypes.h"

/**
 * A constraint to apply to an alignment zone, or to an overall
 * alignment.
 *
 * The constraint can put both caps and ceilings on the number and
 * types of edits allowed.
 */
struct Constraint {
	
	Constraint() { init(); }
	
	/**
	 * Initialize Constraint to be fully permissive.
	 */
	void init() {
		edits = mms = ins = dels = penalty = editsCeil = mmsCeil =
		insCeil = delsCeil = penaltyCeil = MAX_I;
		penFunc.reset();
		instantiated = false;
	}
	
	/**
	 * Return true iff penalities and constraints prevent us from
	 * adding any edits.
	 */
	bool mustMatch() {
		assert(instantiated);
		return (mms == 0 && edits == 0) ||
		        penalty == 0 ||
		       (mms == 0 && dels == 0 && ins == 0);
	}
	
	/**
	 * Return true iff a mismatch of the given quality is permitted.
	 */
	bool canMismatch(int q, const Scoring& cm) {
		assert(instantiated);
		return (mms > 0 || edits > 0) &&
		       penalty >= cm.mm(q);
	}

	/**
	 * Return true iff a mismatch of the given quality is permitted.
	 */
	bool canN(int q, const Scoring& cm) {
		assert(instantiated);
		return (mms > 0 || edits > 0) &&
		       penalty >= cm.n(q);
	}
	
	/**
	 * Return true iff a mismatch of *any* quality (even qual=1) is
	 * permitted.
	 */
	bool canMismatch() {
		assert(instantiated);
		return (mms > 0 || edits > 0) && penalty > 0;
	}

	/**
	 * Return true iff a mismatch of *any* quality (even qual=1) is
	 * permitted.
	 */
	bool canN() {
		assert(instantiated);
		return (mms > 0 || edits > 0);
	}
	
	/**
	 * Return true iff a deletion of the given extension (0=open, 1=1st
	 * extension, etc) is permitted.
	 */
	bool canDelete(int ex, const Scoring& cm) {
		assert(instantiated);
		return (dels > 0 && edits > 0) &&
		       penalty >= cm.del(ex);
	}

	/**
	 * Return true iff a deletion of any extension is permitted.
	 */
	bool canDelete() {
		assert(instantiated);
		return (dels > 0 || edits > 0) &&
		       penalty > 0;
	}
	
	/**
	 * Return true iff an insertion of the given extension (0=open,
	 * 1=1st extension, etc) is permitted.
	 */
	bool canInsert(int ex, const Scoring& cm) {
		assert(instantiated);
		return (ins > 0 || edits > 0) &&
		       penalty >= cm.ins(ex);
	}

	/**
	 * Return true iff an insertion of any extension is permitted.
	 */
	bool canInsert() {
		assert(instantiated);
		return (ins > 0 || edits > 0) &&
		       penalty > 0;
	}
	
	/**
	 * Return true iff a gap of any extension is permitted
	 */
	bool canGap() {
		assert(instantiated);
		return ((ins > 0 || dels > 0) || edits > 0) && penalty > 0;
	}
	
	/**
	 * Charge a mismatch of the given quality.
	 */
	void chargeMismatch(int q, const Scoring& cm) {
		assert(instantiated);
		if(mms == 0) { assert_gt(edits, 0); edits--; }
		else mms--;
		penalty -= cm.mm(q);
		assert_geq(mms, 0);
		assert_geq(edits, 0);
		assert_geq(penalty, 0);
	}
	
	/**
	 * Charge an N mismatch of the given quality.
	 */
	void chargeN(int q, const Scoring& cm) {
		assert(instantiated);
		if(mms == 0) { assert_gt(edits, 0); edits--; }
		else mms--;
		penalty -= cm.n(q);
		assert_geq(mms, 0);
		assert_geq(edits, 0);
		assert_geq(penalty, 0);
	}
	
	/**
	 * Charge a deletion of the given extension.
	 */
	void chargeDelete(int ex, const Scoring& cm) {
		assert(instantiated);
		dels--;
		edits--;
		penalty -= cm.del(ex);
		assert_geq(dels, 0);
		assert_geq(edits, 0);
		assert_geq(penalty, 0);
	}

	/**
	 * Charge an insertion of the given extension.
	 */
	void chargeInsert(int ex, const Scoring& cm) {
		assert(instantiated);
		ins--;
		edits--;
		penalty -= cm.ins(ex);
		assert_geq(ins, 0);
		assert_geq(edits, 0);
		assert_geq(penalty, 0);
	}
	
	/**
	 * Once the constrained area is completely explored, call this
	 * function to check whether there were *at least* as many
	 * dissimilarities as required by the constraint.  Bounds like this
	 * are helpful to resolve instances where two search roots would
	 * otherwise overlap in what alignments they can find.
	 */
	bool acceptable() {
		assert(instantiated);
		return edits   <= editsCeil &&
		       mms     <= mmsCeil   &&
		       ins     <= insCeil   &&
		       dels    <= delsCeil  &&
		       penalty <= penaltyCeil;
	}
	
	/**
	 * Instantiate a constraint w/r/t the read length and the constant
	 * and linear coefficients for the penalty function.
	 */
	static int instantiate(size_t rdlen, const SimpleFunc& func) {
		return func.f<int>((double)rdlen);
	}
	
	/**
	 * Instantiate this constraint w/r/t the read length.
	 */
	void instantiate(size_t rdlen) {
		assert(!instantiated);
		if(penFunc.initialized()) {
			penalty = Constraint::instantiate(rdlen, penFunc);
		}
		instantiated = true;
	}
	
	int edits;      // # edits permitted
	int mms;        // # mismatches permitted
	int ins;        // # insertions permitted
	int dels;       // # deletions permitted
	int penalty;    // penalty total permitted
	int editsCeil;  // <= this many edits can be left at the end
	int mmsCeil;    // <= this many mismatches can be left at the end
	int insCeil;    // <= this many inserts can be left at the end
	int delsCeil;   // <= this many deletions can be left at the end
	int penaltyCeil;// <= this much leftover penalty can be left at the end
	SimpleFunc penFunc;// penalty function; function of read len
	bool instantiated; // whether constraint is instantiated w/r/t read len
	
	//
	// Some static methods for constructing some standard Constraints
	//

	/**
	 * Construct a constraint with no edits of any kind allowed.
	 */
	static Constraint exact();
	
	/**
	 * Construct a constraint where the only constraint is a total
	 * penalty constraint.
	 */
	static Constraint penaltyBased(int pen);

	/**
	 * Construct a constraint where the only constraint is a total
	 * penalty constraint related to the length of the read.
	 */
	static Constraint penaltyFuncBased(const SimpleFunc& func);

	/**
	 * Construct a constraint where the only constraint is a total
	 * penalty constraint.
	 */
	static Constraint mmBased(int mms);

	/**
	 * Construct a constraint where the only constraint is a total
	 * penalty constraint.
	 */
	static Constraint editBased(int edits);
};

/**
 * We divide seed search strategies into three categories:
 *
 * 1. A left-to-right search where the left half of the read is
 *    constrained to match exactly and the right half is subject to
 *    some looser constraint (e.g. 1mm or 2mm)
 * 2. Same as 1, but going right to left with the exact matching half
 *    on the right.
 * 3. Inside-out search where the center half of the read is
 *    constrained to match exactly, and the extreme quarters of the
 *    read are subject to a looser constraint.
 */
enum {
	SEED_TYPE_EXACT = 1,
	SEED_TYPE_LEFT_TO_RIGHT,
	SEED_TYPE_RIGHT_TO_LEFT,
	SEED_TYPE_INSIDE_OUT
};

struct InstantiatedSeed;

/**
 * Policy dictating how to size and arrange seeds along the length of
 * the read, and what constraints to force on the zones of the seed.
 * We assume that seeds are plopped down at regular intervals from the
 * 5' to 3' ends, with the first seed flush to the 5' end.
 *
 * If the read is shorter than a single seed, one seed is used and it
 * is shrunk to accommodate the read.
 */
struct Seed {

	int len;             // length of a seed
	int type;            // dictates anchor portion, direction of search
	Constraint *overall; // for the overall alignment

	Seed() { init(0, 0, NULL); }

	/**
	 * Construct and initialize this seed with given length and type.
	 */
	Seed(int ln, int ty, Constraint* oc) {
		init(ln, ty, oc);
	}

	/**
	 * Initialize this seed with given length and type.
	 */
	void init(int ln, int ty, Constraint* oc) {
		len = ln;
		type = ty;
		overall = oc;
	}
	
	// If the seed is split into halves, we just use zones[0] and
	// zones[1]; 0 is the near half and 1 is the far half.  If the seed
	// is split into thirds (i.e. inside-out) then 0 is the center, 1
	// is the far portion on the left, and 2 is the far portion on the
	// right.
	Constraint zones[3];

	/**
	 * Once the constrained seed is completely explored, call this
	 * function to check whether there were *at least* as many
	 * dissimilarities as required by all constraints.  Bounds like this
	 * are helpful to resolve instances where two search roots would
	 * otherwise overlap in what alignments they can find.
	 */
	bool acceptable() {
		assert(overall != NULL);
		return zones[0].acceptable() &&
		       zones[1].acceptable() &&
		       zones[2].acceptable() &&
		       overall->acceptable();
	}

	/**
	 * Given a read, depth and orientation, extract a seed data structure
	 * from the read and fill in the steps & zones arrays.  The Seed
	 * contains the sequence and quality values.
	 */
	bool instantiate(
		const Read& read,
		const BTDnaString& seq, // already-extracted seed sequence
		const BTString& qual,   // already-extracted seed quality sequence
		const Scoring& pens,
		int depth,
		int seedoffidx,
		int seedtypeidx,
		bool fw,
		InstantiatedSeed& si) const;

	/**
	 * Return a list of Seed objects encapsulating
	 */
	static void mmSeeds(
		int mms,
		int ln,
		EList<Seed>& pols,
		Constraint& oall)
	{
		if(mms == 0) {
			zeroMmSeeds(ln, pols, oall);
		} else if(mms == 1) {
			oneMmSeeds(ln, pols, oall);
		} else if(mms == 2) {
			twoMmSeeds(ln, pols, oall);
		} else throw 1;
	}
	
	static void zeroMmSeeds(int ln, EList<Seed>&, Constraint&);
	static void oneMmSeeds (int ln, EList<Seed>&, Constraint&);
	static void twoMmSeeds (int ln, EList<Seed>&, Constraint&);
};

/**
 * An instantiated seed is a seed (perhaps modified to fit the read)
 * plus all data needed to conduct a search of the seed.
 */
struct InstantiatedSeed {

	InstantiatedSeed() : steps(AL_CAT), zones(AL_CAT) { }

	// Steps map.  There are as many steps as there are positions in
	// the seed.  The map is a helpful abstraction because we sometimes
	// visit seed positions in an irregular order (e.g. inside-out
	// search).
	EList<int> steps;

	// Zones map.  For each step, records what constraint to charge an
	// edit to.  The first entry in each pair gives the constraint for
	// non-insert edits and the second entry in each pair gives the
	// constraint for insert edits.  If the value stored is negative,
	// this indicates that the zone is "closed out" after this
	// position, so zone acceptility should be checked.
	EList<pair<int, int> > zones;

	// Nucleotide sequence covering the seed, extracted from read
	BTDnaString *seq;
	
	// Quality sequence covering the seed, extracted from read
	BTString *qual;
	
	// Initial constraints governing zones 0, 1, 2.  We precalculate
	// the effect of Ns on these.
	Constraint cons[3];
	
	// Overall constraint, tailored to the read length.
	Constraint overall;
	
	// Maximum number of positions that the aligner may advance before
	// its first step.  This lets the aligner know whether it can use
	// the ftab or not.
	int maxjump;
	
	// Offset of seed from 5' end of read
	int seedoff;

	// Id for seed offset; ids are such that the smallest index is the
	// closest to the 5' end and consecutive ids are adjacent (i.e.
	// there are no intervening offsets with seeds)
	int seedoffidx;
	
	// Type of seed (left-to-right, etc)
	int seedtypeidx;
	
	// Seed comes from forward-oriented read?
	bool fw;
	
	// Filtered out due to the pattern of Ns present.  If true, this
	// seed should be ignored by searchAllSeeds().
	bool nfiltered;
	
	// Seed this was instantiated from
	Seed s;
	
#ifndef NDEBUG
	/**
	 * Check that InstantiatedSeed is internally consistent.
	 */
	bool repOk() const {
		return true;
	}
#endif
};

/**
 * Simple struct for holding a end-to-end alignments for the read with at most
 * 2 edits.
 */
struct EEHit {
	
	EEHit() { reset(); }
	
	void reset() {
		top = bot = 0;
		fw = false;
		e1.reset();
		e2.reset();
		score = MIN_I64;
	}
	
	void init(
		TIndexOffU top_,
		TIndexOffU bot_,
		const Edit* e1_,
		const Edit* e2_,
		bool fw_,
		int64_t score_)
	{
		top = top_; bot = bot_;
		if(e1_ != NULL) {
			e1 = *e1_;
		} else {
			e1.reset();
		}
		if(e2_ != NULL) {
			e2 = *e2_;
		} else {
			e2.reset();
		}
		fw = fw_;
		score = score_;
	}
	
	/**
	 * Return number of mismatches in the alignment.
	 */
	int mms() const {
		if     (e2.inited()) return 2;
		else if(e1.inited()) return 1;
		else                 return 0;
	}
	
	/**
	 * Return the number of Ns involved in the alignment.
	 */
	int ns() const {
		int ns = 0;
		if(e1.inited() && e1.hasN()) {
			ns++;
			if(e2.inited() && e2.hasN()) {
				ns++;
			}
		}
		return ns;
	}

	/**
	 * Return the number of Ns involved in the alignment.
	 */
	int refns() const {
		int ns = 0;
		if(e1.inited() && e1.chr == 'N') {
			ns++;
			if(e2.inited() && e2.chr == 'N') {
				ns++;
			}
		}
		return ns;
	}
	
	/**
	 * Return true iff there is no hit.
	 */
	bool empty() const {
		return bot <= top;
	}
	
	/**
	 * Higher score = higher priority.
	 */
	bool operator<(const EEHit& o) const {
		return score > o.score;
	}
	
	/**
	 * Return the size of the alignments SA range.s
	 */
	TIndexOffU size() const { return bot - top; }
	
#ifndef NDEBUG
	/**
	 * Check that hit is sane w/r/t read.
	 */
	bool repOk(const Read& rd) const {
		assert_gt(bot, top);
		if(e1.inited()) {
			assert_lt(e1.pos, rd.length());
			if(e2.inited()) {
				assert_lt(e2.pos, rd.length());
			}
		}
		return true;
	}
#endif
	
	TIndexOffU top;
	TIndexOffU bot;
	Edit     e1;
	Edit     e2;
	bool     fw;
	int64_t  score;
};

/**
 * Data structure for holding all of the seed hits associated with a read.  All
 * the seed hits for a given read are encapsulated in a single QVal object.  A
 * QVal refers to a range of values in the qlist, where each qlist value is a 
 * BW range and a slot to hold the hit's suffix array offset.  QVals are kept
 * in two lists (hitsFw_ and hitsRc_), one for seeds on the forward read strand,
 * one for seeds on the reverse read strand.  The list is indexed by read
 * offset index (e.g. 0=closest-to-5', 1=second-closest, etc).
 *
 * An assumption behind this data structure is that all the seeds are found
 * first, then downstream analyses try to extend them.  In between finding the
 * seed hits and extending them, the sort() member function is called, which
 * ranks QVals according to the order they should be extended.  Right now the
 * policy is that QVals with fewer elements (hits) should be tried first.
 */
class SeedResults {

public:
	SeedResults() :
		seqFw_(AL_CAT),
		seqRc_(AL_CAT),
		qualFw_(AL_CAT),
		qualRc_(AL_CAT),
		hitsFw_(AL_CAT),
		hitsRc_(AL_CAT),
		isFw_(AL_CAT),
		isRc_(AL_CAT),
		sortedFw_(AL_CAT),
		sortedRc_(AL_CAT),
		offIdx2off_(AL_CAT),
		rankOffs_(AL_CAT),
		rankFws_(AL_CAT),
		mm1Hit_(AL_CAT)
	{
		clear();
	}
	
	/**
	 * Set the current read.
	 */
	void nextRead(const Read& read) {
		read_ = &read;
	}

	/**
	 * Set the appropriate element of either hitsFw_ or hitsRc_ to the given
	 * QVal.  A QVal encapsulates all the BW ranges for reference substrings 
	 * that are within some distance of the seed string.
	 */
	void add(
		const QVal& qv,           // range of ranges in cache
		const AlignmentCache& ac, // cache
		uint32_t seedIdx,         // seed index (from 5' end)
		bool     seedFw)          // whether seed is from forward read
	{
		assert(qv.repOk(ac));
		assert(repOk(&ac));
		assert_lt(seedIdx, hitsFw_.size());
		assert_gt(numOffs_, 0); // if this fails, probably failed to call reset
		if(qv.empty()) return;
		if(seedFw) {
			assert(!hitsFw_[seedIdx].valid());
			hitsFw_[seedIdx] = qv;
			numEltsFw_ += qv.numElts();
			numRangesFw_ += qv.numRanges();
			if(qv.numRanges() > 0) nonzFw_++;
		} else {
			assert(!hitsRc_[seedIdx].valid());
			hitsRc_[seedIdx] = qv;
			numEltsRc_ += qv.numElts();
			numRangesRc_ += qv.numRanges();
			if(qv.numRanges() > 0) nonzRc_++;
		}
		numElts_ += qv.numElts();
		numRanges_ += qv.numRanges();
		if(qv.numRanges() > 0) {
			nonzTot_++;
			if(qv.numRanges() == 1 and qv.numElts() == 1) {
				uniTot_++;
			} else {
				repTot_++;
			}
		}
		assert(repOk(&ac));
	}

	/**
	 * Clear buffered seed hits and state.  Set the number of seed
	 * offsets and the read.
	 */
	void reset(
		const Read& read,
		const EList<uint32_t>& offIdx2off,
		size_t numOffs)
	{
		assert_gt(numOffs, 0);
		clearSeeds();
		numOffs_ = numOffs;
		seqFw_.resize(numOffs_);
		seqRc_.resize(numOffs_);
		qualFw_.resize(numOffs_);
		qualRc_.resize(numOffs_);
		hitsFw_.resize(numOffs_);
		hitsRc_.resize(numOffs_);
		isFw_.resize(numOffs_);
		isRc_.resize(numOffs_);
		sortedFw_.resize(numOffs_);
		sortedRc_.resize(numOffs_);
		offIdx2off_ = offIdx2off;
		for(size_t i = 0; i < numOffs_; i++) {
			sortedFw_[i] = sortedRc_[i] = false;
			hitsFw_[i].reset();
			hitsRc_[i].reset();
			isFw_[i].clear();
			isRc_[i].clear();
		}
		read_ = &read;
		sorted_ = false;
	}
	
	/**
	 * Clear seed-hit state.
	 */
	void clearSeeds() {
		sortedFw_.clear();
		sortedRc_.clear();
		rankOffs_.clear();
		rankFws_.clear();
		offIdx2off_.clear();
		hitsFw_.clear();
		hitsRc_.clear();
		isFw_.clear();
		isRc_.clear();
		seqFw_.clear();
		seqRc_.clear();
		nonzTot_ = 0;
		uniTot_ = 0;
		repTot_ = 0;
		nonzFw_ = 0;
		nonzRc_ = 0;
		numOffs_ = 0;
		numRanges_ = 0;
		numElts_ = 0;
		numRangesFw_ = 0;
		numEltsFw_ = 0;
		numRangesRc_ = 0;
		numEltsRc_ = 0;
	}
	
	/**
	 * Clear seed-hit state and end-to-end alignment state.
	 */
	void clear() {
		clearSeeds();
		read_ = NULL;
		exactFwHit_.reset();
		exactRcHit_.reset();
		mm1Hit_.clear();
		mm1Sorted_ = false;
		mm1Elt_ = 0;
		assert(empty());
	}
	
	/**
	 * Extract key summaries from this SeedResults and put into 'ssum'.
	 */
	void toSeedAlSumm(SeedAlSumm& ssum) const {
		// Number of positions with at least 1 range
		ssum.nonzTot   = nonzTot_;
		ssum.nonzFw    = nonzFw_;
		ssum.nonzRc    = nonzRc_;

		// Number of ranges
		ssum.nrangeTot = numRanges_;
		ssum.nrangeFw  = numRangesFw_;
		ssum.nrangeRc  = numRangesRc_;

		// Number of elements
		ssum.neltTot   = numElts_;
		ssum.neltFw    = numEltsFw_;
		ssum.neltRc    = numEltsRc_;
		
		// Other summaries
		ssum.maxNonzRangeFw = ssum.minNonzRangeFw = 0;
		ssum.maxNonzRangeRc = ssum.minNonzRangeRc = 0;
		ssum.maxNonzEltFw = ssum.minNonzEltFw = 0;
		ssum.maxNonzEltRc = ssum.minNonzEltRc = 0;
		for(size_t i = 0; i < numOffs_; i++) {
			if(hitsFw_[i].valid()) {
				if(ssum.minNonzEltFw == 0 || hitsFw_[i].numElts() < ssum.minNonzEltFw) {
					ssum.minNonzEltFw = hitsFw_[i].numElts();
				}
				if(ssum.maxNonzEltFw == 0 || hitsFw_[i].numElts() > ssum.maxNonzEltFw) {
					ssum.maxNonzEltFw = hitsFw_[i].numElts();
				}
				if(ssum.minNonzRangeFw == 0 || hitsFw_[i].numRanges() < ssum.minNonzRangeFw) {
					ssum.minNonzRangeFw = hitsFw_[i].numRanges();
				}
				if(ssum.maxNonzRangeFw == 0 || hitsFw_[i].numRanges() > ssum.maxNonzRangeFw) {
					ssum.maxNonzRangeFw = hitsFw_[i].numRanges();
				}
			}
			if(hitsRc_[i].valid()) {
				if(ssum.minNonzEltRc == 0 || hitsRc_[i].numElts() < ssum.minNonzEltRc) {
					ssum.minNonzEltRc = hitsRc_[i].numElts();
				}
				if(ssum.maxNonzEltRc == 0 || hitsRc_[i].numElts() > ssum.maxNonzEltRc) {
					ssum.maxNonzEltRc = hitsRc_[i].numElts();
				}
				if(ssum.minNonzRangeRc == 0 || hitsRc_[i].numRanges() < ssum.minNonzRangeRc) {
					ssum.minNonzRangeRc = hitsRc_[i].numRanges();
				}
				if(ssum.maxNonzRangeRc == 0 || hitsRc_[i].numRanges() > ssum.maxNonzRangeRc) {
					ssum.maxNonzRangeRc = hitsRc_[i].numRanges();
				}
			}
		}
	}
	
	/**
	 * Return average number of hits per seed.
	 */
	float averageHitsPerSeed() const {
		return (float)numElts_ / (float)nonzTot_;
	}

	/**
	 * Return fraction of seeds that align uniquely.
	 */
	size_t numUniqueSeeds() const {
		return uniTot_;
	}

	/**
	 * Return fraction of seeds that align repetitively.
	 */
	size_t numRepeatSeeds() const {
		return repTot_;
	}
	
	/**
	 * Return median of all the non-zero per-seed # hits
	 */
	float medianHitsPerSeed() const {
		EList<size_t>& median = const_cast<EList<size_t>&>(tmpMedian_);
		median.clear();
		for(size_t i = 0; i < numOffs_; i++) {
			if(hitsFw_[i].valid() && hitsFw_[i].numElts() > 0) {
				median.push_back(hitsFw_[i].numElts());
			}
			if(hitsRc_[i].valid() && hitsRc_[i].numElts() > 0) {
				median.push_back(hitsRc_[i].numElts());
			}
		}
		if(tmpMedian_.empty()) {
			return 0.0f;
		}
		median.sort();
		float med1 = (float)median[tmpMedian_.size() >> 1];
		float med2 = med1;
		if((median.size() & 1) == 0) {
			med2 = (float)median[(tmpMedian_.size() >> 1) - 1];
		}
		return med1 + med2 * 0.5f;
	}
	
	/**
	 * Return a number that's meant to quantify how hopeful we are that this
	 * set of seed hits will lead to good alignments.
	 */
	double uniquenessFactor() const {
		double result = 0.0;
		for(size_t i = 0; i < numOffs_; i++) {
			if(hitsFw_[i].valid()) {
				size_t nelt = hitsFw_[i].numElts();
				result += (1.0 / (double)(nelt * nelt));
			}
			if(hitsRc_[i].valid()) {
				size_t nelt = hitsRc_[i].numElts();
				result += (1.0 / (double)(nelt * nelt));
			}
		}
		return result;
	}

	/**
	 * Return the number of ranges being held.
	 */
	size_t numRanges() const { return numRanges_; }

	/**
	 * Return the number of elements being held.
	 */
	size_t numElts() const { return numElts_; }

	/**
	 * Return the number of ranges being held for seeds on the forward
	 * read strand.
	 */
	size_t numRangesFw() const { return numRangesFw_; }

	/**
	 * Return the number of elements being held for seeds on the
	 * forward read strand.
	 */
	size_t numEltsFw() const { return numEltsFw_; }

	/**
	 * Return the number of ranges being held for seeds on the
	 * reverse-complement read strand.
	 */
	size_t numRangesRc() const { return numRangesRc_; }

	/**
	 * Return the number of elements being held for seeds on the
	 * reverse-complement read strand.
	 */
	size_t numEltsRc() const { return numEltsRc_; }
	
	/**
	 * Given an offset index, return the offset that has that index.
	 */
	size_t idx2off(size_t off) const {
		return offIdx2off_[off];
	}
	
	/**
	 * Return true iff there are 0 hits being held.
	 */
	bool empty() const { return numRanges() == 0; }
	
	/**
	 * Get the QVal representing all the reference hits for the given
	 * orientation and seed offset index.
	 */
	const QVal& hitsAtOffIdx(bool fw, size_t seedoffidx) const {
		assert_lt(seedoffidx, numOffs_);
		assert(repOk(NULL));
		return fw ? hitsFw_[seedoffidx] : hitsRc_[seedoffidx];
	}

	/**
	 * Get the Instantiated seeds for the given orientation and offset.
	 */
	EList<InstantiatedSeed>& instantiatedSeeds(bool fw, size_t seedoffidx) {
		assert_lt(seedoffidx, numOffs_);
		assert(repOk(NULL));
		return fw ? isFw_[seedoffidx] : isRc_[seedoffidx];
	}
	
	/**
	 * Return the number of different seed offsets possible.
	 */
	size_t numOffs() const { return numOffs_; }
	
	/**
	 * Return the read from which seeds were extracted, aligned.
	 */
	const Read& read() const { return *read_; }
	
#ifndef NDEBUG
	/**
	 * Check that this SeedResults is internally consistent.
	 */
	bool repOk(
		const AlignmentCache* ac,
		bool requireInited = false) const
	{
		if(requireInited) {
			assert(read_ != NULL);
		}
		if(numOffs_ > 0) {
			assert_eq(numOffs_, hitsFw_.size());
			assert_eq(numOffs_, hitsRc_.size());
			assert_leq(numRanges_, numElts_);
			assert_leq(nonzTot_, numRanges_);
			size_t nonzs = 0;
			for(int fw = 0; fw <= 1; fw++) {
				const EList<QVal>& rrs = (fw ? hitsFw_ : hitsRc_);
				for(size_t i = 0; i < numOffs_; i++) {
					if(rrs[i].valid()) {
						if(rrs[i].numRanges() > 0) nonzs++;
						if(ac != NULL) {
							assert(rrs[i].repOk(*ac));
						}
					}
				}
			}
			assert_eq(nonzs, nonzTot_);
			assert(!sorted_ || nonzTot_ == rankFws_.size());
			assert(!sorted_ || nonzTot_ == rankOffs_.size());
		}
		return true;
	}
#endif
	
	/**
	 * Populate rankOffs_ and rankFws_ with the list of QVals that need to be
	 * examined for this SeedResults, in order.  The order is ascending by
	 * number of elements, so QVals with fewer elements (i.e. seed sequences
	 * that are more unique) will be tried first and QVals with more elements
	 * (i.e. seed sequences
	 */
	void rankSeedHits(RandomSource& rnd, bool all) {
		if(all) {
			for(uint32_t i = 1; i < numOffs_; i++) {
				for(int fwi = 0; fwi <= 1; fwi++) {
					bool fw = fwi == 0;
					EList<QVal>& rrs = (fw ? hitsFw_ : hitsRc_);
					if(rrs[i].valid() && rrs[i].numElts() > 0) {
						rankOffs_.push_back(i);
						rankFws_.push_back(fw);
					}
				}
			}
			if(hitsFw_[0].valid() && hitsFw_[0].numElts() > 0) {
				rankOffs_.push_back(0);
				rankFws_.push_back(true);
			}
			if(hitsRc_[0].valid() && hitsRc_[0].numElts() > 0) {
				rankOffs_.push_back(0);
				rankFws_.push_back(false);
			}
		} else {
			while(rankOffs_.size() < nonzTot_) {
				TIndexOffU minsz = MAX_U32;
				uint32_t minidx = 0;
				bool minfw = true;
				// Rank seed-hit positions in ascending order by number of elements
				// in all BW ranges
				bool rb = rnd.nextBool();
				assert(rb == 0 || rb == 1);
				for(int fwi = 0; fwi <= 1; fwi++) {
					bool fw = (fwi == (rb ? 1 : 0));
					EList<QVal>& rrs = (fw ? hitsFw_ : hitsRc_);
					EList<bool>& sorted = (fw ? sortedFw_ : sortedRc_);
					uint32_t i = (rnd.nextU32() % (uint32_t)numOffs_);
					for(uint32_t ii = 0; ii < numOffs_; ii++) {
						if(rrs[i].valid() &&         // valid QVal
						   rrs[i].numElts() > 0 &&   // non-empty
						   !sorted[i] &&             // not already sorted
						   rrs[i].numElts() < minsz) // least elts so far?
						{
							minsz = rrs[i].numElts();
							minidx = i;
							minfw = (fw == 1);
						}
						if((++i) == numOffs_) {
							i = 0;
						}
					}
				}
				assert_neq(MAX_U32, minsz);
				if(minfw) {
					sortedFw_[minidx] = true;
				} else {
					sortedRc_[minidx] = true;
				}
				rankOffs_.push_back(minidx);
				rankFws_.push_back(minfw);
			}
		}
		assert_eq(rankOffs_.size(), rankFws_.size());
		sorted_ = true;
	}

	/**
	 * Return the number of orientation/offsets into the read that have
	 * at least one seed hit.
	 */
	size_t nonzeroOffsets() const {
		assert(!sorted_ || nonzTot_ == rankFws_.size());
		assert(!sorted_ || nonzTot_ == rankOffs_.size());
		return nonzTot_;
	}
	
	/**
	 * Return true iff all seeds hit for forward read.
	 */
	bool allFwSeedsHit() const {
		return nonzFw_ == numOffs();
	}

	/**
	 * Return true iff all seeds hit for revcomp read.
	 */
	bool allRcSeedsHit() const {
		return nonzRc_ == numOffs();
	}
	
	/**
	 * Return the minimum number of edits that an end-to-end alignment of the
	 * fw read could have.  Uses knowledge of how many seeds have exact hits
	 * and how the seeds overlap.
	 */
	size_t fewestEditsEE(bool fw, int seedlen, int per) const {
		assert_gt(seedlen, 0);
		assert_gt(per, 0);
		size_t nonz = fw ? nonzFw_ : nonzRc_;
		if(nonz < numOffs()) {
			int maxdepth = (seedlen + per - 1) / per;
			int missing = (int)(numOffs() - nonz);
			return (missing + maxdepth - 1) / maxdepth;
		} else {
			// Exact hit is possible (not guaranteed)
			return 0;
		}
	}

	/**
	 * Return the number of offsets into the forward read that have at
	 * least one seed hit.
	 */
	size_t nonzeroOffsetsFw() const {
		return nonzFw_;
	}
	
	/**
	 * Return the number of offsets into the reverse-complement read
	 * that have at least one seed hit.
	 */
	size_t nonzeroOffsetsRc() const {
		return nonzRc_;
	}

	/**
	 * Return a QVal of seed hits of the given rank 'r'.  'offidx' gets the id
	 * of the offset from 5' from which it was extracted (0 for the 5-most
	 * offset, 1 for the next closes to 5', etc).  'off' gets the offset from
	 * the 5' end.  'fw' gets true iff the seed was extracted from the forward
	 * read.
	 */
	const QVal& hitsByRank(
		size_t    r,       // in
		uint32_t& offidx,  // out
		uint32_t& off,     // out
		bool&     fw,      // out
		uint32_t& seedlen) // out
	{
		assert(sorted_);
		assert_lt(r, nonzTot_);
		if(rankFws_[r]) {
			fw = true;
			offidx = rankOffs_[r];
			assert_lt(offidx, offIdx2off_.size());
			off = offIdx2off_[offidx];
			seedlen = (uint32_t)seqFw_[rankOffs_[r]].length();
			return hitsFw_[rankOffs_[r]];
		} else {
			fw = false;
			offidx = rankOffs_[r];
			assert_lt(offidx, offIdx2off_.size());
			off = offIdx2off_[offidx];
			seedlen = (uint32_t)seqRc_[rankOffs_[r]].length();
			return hitsRc_[rankOffs_[r]];
		}
	}

	/**
	 * Return an EList of seed hits of the given rank.
	 */
	const BTDnaString& seqByRank(size_t r) {
		assert(sorted_);
		assert_lt(r, nonzTot_);
		return rankFws_[r] ? seqFw_[rankOffs_[r]] : seqRc_[rankOffs_[r]];
	}

	/**
	 * Return an EList of seed hits of the given rank.
	 */
	const BTString& qualByRank(size_t r) {
		assert(sorted_);
		assert_lt(r, nonzTot_);
		return rankFws_[r] ? qualFw_[rankOffs_[r]] : qualRc_[rankOffs_[r]];
	}
	
	/**
	 * Return the list of extracted seed sequences for seeds on either
	 * the forward or reverse strand.
	 */
	EList<BTDnaString>& seqs(bool fw) { return fw ? seqFw_ : seqRc_; }

	/**
	 * Return the list of extracted quality sequences for seeds on
	 * either the forward or reverse strand.
	 */
	EList<BTString>& quals(bool fw) { return fw ? qualFw_ : qualRc_; }

	/**
	 * Return exact end-to-end alignment of fw read.
	 */
	EEHit exactFwEEHit() const { return exactFwHit_; }

	/**
	 * Return exact end-to-end alignment of rc read.
	 */
	EEHit exactRcEEHit() const { return exactRcHit_; }
	
	/**
	 * Return const ref to list of 1-mismatch end-to-end alignments.
	 */
	const EList<EEHit>& mm1EEHits() const { return mm1Hit_; }
	
	/**
	 * Sort the end-to-end 1-mismatch alignments, prioritizing by score (higher
	 * score = higher priority).
	 */
	void sort1mmEe(RandomSource& rnd) {
		assert(!mm1Sorted_);
		mm1Hit_.sort();
		size_t streak = 0;
		for(size_t i = 1; i < mm1Hit_.size(); i++) {
			if(mm1Hit_[i].score == mm1Hit_[i-1].score) {
				if(streak == 0) { streak = 1; }
				streak++;
			} else {
				if(streak > 1) {
					assert_geq(i, streak);
					mm1Hit_.shufflePortion(i-streak, streak, rnd);
				}
				streak = 0;
			}
		}
		if(streak > 1) {
			mm1Hit_.shufflePortion(mm1Hit_.size() - streak, streak, rnd);
		}
		mm1Sorted_ = true;
	}
	
	/**
	 * Add an end-to-end 1-mismatch alignment.
	 */
	void add1mmEe(
		TIndexOffU top,
		TIndexOffU bot,
		const Edit* e1,
		const Edit* e2,
		bool fw,
		int64_t score)
	{
		mm1Hit_.expand();
		mm1Hit_.back().init(top, bot, e1, e2, fw, score);
		mm1Elt_ += (bot - top);
	}

	/**
	 * Add an end-to-end exact alignment.
	 */
	void addExactEeFw(
		TIndexOffU top,
		TIndexOffU bot,
		const Edit* e1,
		const Edit* e2,
		bool fw,
		int64_t score)
	{
		exactFwHit_.init(top, bot, e1, e2, fw, score);
	}

	/**
	 * Add an end-to-end exact alignment.
	 */
	void addExactEeRc(
		TIndexOffU top,
		TIndexOffU bot,
		const Edit* e1,
		const Edit* e2,
		bool fw,
		int64_t score)
	{
		exactRcHit_.init(top, bot, e1, e2, fw, score);
	}
	
	/**
	 * Clear out the end-to-end exact alignments.
	 */
	void clearExactE2eHits() {
		exactFwHit_.reset();
		exactRcHit_.reset();
	}
	
	/**
	 * Clear out the end-to-end 1-mismatch alignments.
	 */
	void clear1mmE2eHits() {
		mm1Hit_.clear();     // 1-mismatch end-to-end hits
		mm1Elt_ = 0;         // number of 1-mismatch hit rows
		mm1Sorted_ = false;  // true iff we've sorted the mm1Hit_ list
	}

	/**
	 * Return the number of distinct exact and 1-mismatch end-to-end hits
	 * found.
	 */
	size_t numE2eHits() const {
		return exactFwHit_.size() + exactRcHit_.size() + mm1Elt_;
	}

	/**
	 * Return the number of distinct exact end-to-end hits found.
	 */
	size_t numExactE2eHits() const {
		return exactFwHit_.size() + exactRcHit_.size();
	}

	/**
	 * Return the number of distinct 1-mismatch end-to-end hits found.
	 */
	size_t num1mmE2eHits() const {
		return mm1Elt_;
	}
	
	/**
	 * Return the length of the read that yielded the seed hits.
	 */
	size_t readLength() const {
		assert(read_ != NULL);
		return read_->length();
	}

protected:

	// As seed hits and edits are added they're sorted into these
	// containers
	EList<BTDnaString>  seqFw_;       // seqs for seeds from forward read
	EList<BTDnaString>  seqRc_;       // seqs for seeds from revcomp read
	EList<BTString>     qualFw_;      // quals for seeds from forward read
	EList<BTString>     qualRc_;      // quals for seeds from revcomp read
	EList<QVal>         hitsFw_;      // hits for forward read
	EList<QVal>         hitsRc_;      // hits for revcomp read
	EList<EList<InstantiatedSeed> > isFw_; // hits for forward read
	EList<EList<InstantiatedSeed> > isRc_; // hits for revcomp read
	EList<bool>         sortedFw_;    // true iff fw QVal was sorted/ranked
	EList<bool>         sortedRc_;    // true iff rc QVal was sorted/ranked
	size_t              nonzTot_;     // # offsets with non-zero size
	size_t              uniTot_;      // # offsets unique hit
	size_t              repTot_;      // # offsets repetitive hit
	size_t              nonzFw_;      // # offsets into fw read with non-0 size
	size_t              nonzRc_;      // # offsets into rc read with non-0 size
	size_t              numRanges_;   // # ranges added
	size_t              numElts_;     // # elements added
	size_t              numRangesFw_; // # ranges added for fw seeds
	size_t              numEltsFw_;   // # elements added for fw seeds
	size_t              numRangesRc_; // # ranges added for rc seeds
	size_t              numEltsRc_;   // # elements added for rc seeds

	EList<uint32_t>     offIdx2off_;// map from offset indexes to offsets from 5' end

	// When the sort routine is called, the seed hits collected so far
	// are sorted into another set of containers that allow easy access
	// to hits from the lowest-ranked offset (the one with the fewest
	// BW elements) to the greatest-ranked offset.  Offsets with 0 hits
	// are ignored.
	EList<uint32_t>     rankOffs_;  // sorted offests of seeds to try
	EList<bool>         rankFws_;   // sorted orientations assoc. with rankOffs_
	bool                sorted_;    // true if sort() called since last reset
	
	// These fields set once per read
	size_t              numOffs_;   // # different seed offsets possible
	const Read*         read_;      // read from which seeds were extracted
	
	EEHit               exactFwHit_; // end-to-end exact hit for fw read
	EEHit               exactRcHit_; // end-to-end exact hit for rc read
	EList<EEHit>        mm1Hit_;     // 1-mismatch end-to-end hits
	size_t              mm1Elt_;     // number of 1-mismatch hit rows
	bool                mm1Sorted_;  // true iff we've sorted the mm1Hit_ list

	EList<size_t> tmpMedian_; // temporary storage for calculating median
};


// Forward decl
class Ebwt;
struct SideLocus;

/**
 * Encapsulates a sumamry of what the searchAllSeeds aligner did.
 */
struct SeedSearchMetrics {

	SeedSearchMetrics() : mutex_m() {
	    reset();
	}

	/**
	 * Merge this metrics object with the given object, i.e., sum each
	 * category.  This is the only safe way to update a
	 * SeedSearchMetrics object shread by multiple threads.
	 */
	void merge(const SeedSearchMetrics& m, bool getLock = false) {
        ThreadSafe ts(&mutex_m, getLock);
		seedsearch   += m.seedsearch;
		nrange       += m.nrange;
		nelt         += m.nelt;
		possearch    += m.possearch;
		intrahit     += m.intrahit;
		interhit     += m.interhit;
		filteredseed += m.filteredseed;
		ooms         += m.ooms;
		bwops        += m.bwops;
		bweds        += m.bweds;
		bestmin0     += m.bestmin0;
		bestmin1     += m.bestmin1;
		bestmin2     += m.bestmin2;
	}
	
	/**
	 * Set all counters to 0.
	 */
	void reset() {
		seedsearch =
		nrange =
		nelt =
		possearch =
		intrahit =
		interhit =
		filteredseed =
		ooms =
		bwops =
		bweds =
		bestmin0 =
		bestmin1 =
		bestmin2 = 0;
	}

	uint64_t seedsearch;   // # times we executed strategy in InstantiatedSeed
	uint64_t nrange;       // # ranges found
	uint64_t nelt;         // # range elements found
	uint64_t possearch;    // # offsets where aligner executed >= 1 strategy
	uint64_t intrahit;     // # offsets where current-read cache gave answer
	uint64_t interhit;     // # offsets where across-read cache gave answer
	uint64_t filteredseed; // # seed instantiations skipped due to Ns
	uint64_t ooms;         // out-of-memory errors
	uint64_t bwops;        // Burrows-Wheeler operations
	uint64_t bweds;        // Burrows-Wheeler edits
	uint64_t bestmin0;     // # times the best min # edits was 0
	uint64_t bestmin1;     // # times the best min # edits was 1
	uint64_t bestmin2;     // # times the best min # edits was 2
	MUTEX_T  mutex_m;
};

/**
 * Given an index and a seeding scheme, searches for seed hits.
 */
class SeedAligner {

public:
	
	/**
	 * Initialize with index.
	 */
	SeedAligner() : edits_(AL_CAT), offIdx2off_(AL_CAT) { }

	/**
	 * Given a read and a few coordinates that describe a substring of the
	 * read (or its reverse complement), fill in 'seq' and 'qual' objects
	 * with the seed sequence and qualities.
	 */
	void instantiateSeq(
		const Read& read, // input read
		BTDnaString& seq, // output sequence
		BTString& qual,   // output qualities
		int len,          // seed length
		int depth,        // seed's 0-based offset from 5' end
		bool fw) const;   // seed's orientation

	/**
	 * Iterate through the seeds that cover the read and initiate a
	 * search for each seed.
	 */
	std::pair<int, int> instantiateSeeds(
		const EList<Seed>& seeds,   // search seeds
		size_t off,                 // offset into read to start extracting
		int per,                    // interval between seeds
		const Read& read,           // read to align
		const Scoring& pens,        // scoring scheme
		bool nofw,                  // don't align forward read
		bool norc,                  // don't align revcomp read
		AlignmentCacheIface& cache, // holds some seed hits from previous reads
		SeedResults& sr,            // holds all the seed hits
		SeedSearchMetrics& met);    // metrics

	/**
	 * Iterate through the seeds that cover the read and initiate a
	 * search for each seed.
	 */
	void searchAllSeeds(
		const EList<Seed>& seeds,   // search seeds
		const Ebwt* ebwtFw,         // BWT index
		const Ebwt* ebwtBw,         // BWT' index
		const Read& read,           // read to align
		const Scoring& pens,        // scoring scheme
		AlignmentCacheIface& cache, // local seed alignment cache
		SeedResults& hits,          // holds all the seed hits
		SeedSearchMetrics& met,     // metrics
		PerReadMetrics& prm);       // per-read metrics

	/**
	 * Sanity-check a partial alignment produced during oneMmSearch.
	 */
	bool sanityPartial(
		const Ebwt*        ebwtFw, // BWT index
		const Ebwt*        ebwtBw, // BWT' index
		const BTDnaString& seq,
		size_t             dep,
		size_t             len,
		bool               do1mm,
		TIndexOffU           topfw,
		TIndexOffU           botfw,
		TIndexOffU           topbw,
		TIndexOffU           botbw);

	/**
	 * Do an exact-matching sweet to establish a lower bound on number of edits
	 * and to find exact alignments.
	 */
	size_t exactSweep(
		const Ebwt&        ebwt,    // BWT index
		const Read&        read,    // read to align
		const Scoring&     sc,      // scoring scheme
		bool               nofw,    // don't align forward read
		bool               norc,    // don't align revcomp read
		size_t             mineMax, // don't care about edit bounds > this
		size_t&            mineFw,  // minimum # edits for forward read
		size_t&            mineRc,  // minimum # edits for revcomp read
		bool               repex,   // report 0mm hits?
		SeedResults&       hits,    // holds all the seed hits (and exact hit)
		SeedSearchMetrics& met);    // metrics

	/**
	 * Search for end-to-end alignments with up to 1 mismatch.
	 */
	bool oneMmSearch(
		const Ebwt*        ebwtFw, // BWT index
		const Ebwt*        ebwtBw, // BWT' index
		const Read&        read,   // read to align
		const Scoring&     sc,     // scoring
		int64_t            minsc,  // minimum score
		bool               nofw,   // don't align forward read
		bool               norc,   // don't align revcomp read
		bool               local,  // 1mm hits must be legal local alignments
		bool               repex,  // report 0mm hits?
		bool               rep1mm, // report 1mm hits?
		SeedResults&       hits,   // holds all the seed hits (and exact hit)
		SeedSearchMetrics& met);   // metrics

protected:

	/**
	 * Report a seed hit found by searchSeedBi(), but first try to extend it out in
	 * either direction as far as possible without hitting any edits.  This will
	 * allow us to prioritize the seed hits better later on.  Call reportHit() when
	 * we're done, which actually adds the hit to the cache.  Returns result from
	 * calling reportHit().
	 */
	bool extendAndReportHit(
		TIndexOffU topf,                     // top in BWT
		TIndexOffU botf,                     // bot in BWT
		TIndexOffU topb,                     // top in BWT'
		TIndexOffU botb,                     // bot in BWT'
		uint16_t len,                      // length of hit
		DoublyLinkedList<Edit> *prevEdit); // previous edit

	/**
	 * Report a seed hit found by searchSeedBi() by adding it to the cache.  Return
	 * false if the hit could not be reported because of, e.g., cache exhaustion.
	 */
	bool reportHit(
		TIndexOffU topf,         // top in BWT
		TIndexOffU botf,         // bot in BWT
		TIndexOffU topb,         // top in BWT'
		TIndexOffU botb,         // bot in BWT'
		uint16_t len,          // length of hit
		DoublyLinkedList<Edit> *prevEdit);  // previous edit
	
	/**
	 * Given an instantiated seed (in s_ and other fields), search
	 */
	bool searchSeedBi();
	
	/**
	 * Main, recursive implementation of the seed search.
	 */
	bool searchSeedBi(
		int step,              // depth into steps_[] array
		int depth,             // recursion depth
		TIndexOffU topf,         // top in BWT
		TIndexOffU botf,         // bot in BWT
		TIndexOffU topb,         // top in BWT'
		TIndexOffU botb,         // bot in BWT'
		SideLocus tloc,        // locus for top (perhaps unititialized)
		SideLocus bloc,        // locus for bot (perhaps unititialized)
		Constraint c0,         // constraints to enforce in seed zone 0
		Constraint c1,         // constraints to enforce in seed zone 1
		Constraint c2,         // constraints to enforce in seed zone 2
		Constraint overall,    // overall constraints
		DoublyLinkedList<Edit> *prevEdit);  // previous edit
	
	/**
	 * Get tloc and bloc ready for the next step.
	 */
	inline void nextLocsBi(
		SideLocus& tloc,            // top locus
		SideLocus& bloc,            // bot locus
		TIndexOffU topf,              // top in BWT
		TIndexOffU botf,              // bot in BWT
		TIndexOffU topb,              // top in BWT'
		TIndexOffU botb,              // bot in BWT'
		int step);                  // step to get ready for
	
	// Following are set in searchAllSeeds then used by searchSeed()
	// and other protected members.
	const Ebwt* ebwtFw_;       // forward index (BWT)
	const Ebwt* ebwtBw_;       // backward/mirror index (BWT')
	const Scoring* sc_;        // scoring scheme
	const InstantiatedSeed* s_;// current instantiated seed
	
	const Read* read_;         // read whose seeds are currently being aligned
	
	// The following are set just before a call to searchSeedBi()
	const BTDnaString* seq_;   // sequence of current seed
	const BTString* qual_;     // quality string for current seed
	size_t off_;               // offset of seed currently being searched
	bool fw_;                  // orientation of seed currently being searched
	
	EList<Edit> edits_;        // temporary place to sort edits
	AlignmentCacheIface *ca_;  // local alignment cache for seed alignments
	EList<uint32_t> offIdx2off_;// offset idx to read offset map, set up instantiateSeeds()
	uint64_t bwops_;           // Burrows-Wheeler operations
	uint64_t bwedits_;         // Burrows-Wheeler edits
	BTDnaString tmprfdnastr_;  // used in reportHit
	
	ASSERT_ONLY(ESet<BTDnaString> hits_); // Ref hits so far for seed being aligned
	BTDnaString tmpdnastr_;
};

#define INIT_LOCS(top, bot, tloc, bloc, e) { \
	if(bot - top == 1) { \
		tloc.initFromRow(top, (e).eh(), (e).ebwt()); \
		bloc.invalidate(); \
	} else { \
		SideLocus::initFromTopBot(top, bot, (e).eh(), (e).ebwt(), tloc, bloc); \
		assert(bloc.valid()); \
	} \
}

#define SANITY_CHECK_4TUP(t, b, tp, bp) { \
	ASSERT_ONLY(TIndexOffU tot = (b[0]-t[0])+(b[1]-t[1])+(b[2]-t[2])+(b[3]-t[3])); \
	ASSERT_ONLY(TIndexOffU totp = (bp[0]-tp[0])+(bp[1]-tp[1])+(bp[2]-tp[2])+(bp[3]-tp[3])); \
	assert_eq(tot, totp); \
}

#endif /*ALIGNER_SEED_H_*/