File: aligner_sw_driver.cpp

package info (click to toggle)
bowtie2 2.2.4-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 20,280 kB
  • ctags: 5,481
  • sloc: cpp: 58,605; perl: 1,190; sh: 1,036; makefile: 370; ansic: 122; python: 95
file content (2398 lines) | stat: -rw-r--r-- 84,388 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
/*
 * Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
 *
 * This file is part of Bowtie 2.
 *
 * Bowtie 2 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Bowtie 2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
 */

#define TIMER_START() \
	struct timeval tv_i, tv_f; \
	struct timezone tz_i, tz_f; \
	size_t total_usecs; \
	gettimeofday(&tv_i, &tz_i)

#define IF_TIMER_END() \
	gettimeofday(&tv_f, &tz_f); \
	total_usecs = \
		(tv_f.tv_sec - tv_i.tv_sec) * 1000000 + (tv_f.tv_usec - tv_i.tv_usec); \
	if(total_usecs > 300000)

/*
 * aligner_sw_driver.cpp
 *
 * Routines that drive the alignment process given a collection of seed hits.
 * This is generally done in a few stages: extendSeeds visits the set of
 * seed-hit BW elements in some order; for each element visited it resolves its
 * reference offset; once the reference offset is known, bounds for a dynamic
 * programming subproblem are established; if these bounds are distinct from
 * the bounds we've already tried, we solve the dynamic programming subproblem
 * and report the hit; if the AlnSinkWrap indicates that we can stop, we
 * return, otherwise we continue on to the next BW element.
 */

#include <iostream>
#include "aligner_cache.h"
#include "aligner_sw_driver.h"
#include "pe.h"
#include "dp_framer.h"
// -- BTL remove --
#include <stdlib.h>
#include <sys/time.h>
// -- --

using namespace std;

/**
 * Given end-to-end alignment results stored in the SeedResults structure, set
 * up all of our state for resolving and keeping track of reference offsets for
 * hits.  Order the list of ranges to examine such that all exact end-to-end
 * alignments are examined before any 1mm end-to-end alignments.
 *
 * Note: there might be a lot of hits and a lot of wide ranges to look for
 * here.  We use 'maxelt'.
 */
bool SwDriver::eeSaTups(
	const Read& rd,              // read
	SeedResults& sh,             // seed hits to extend into full alignments
	const Ebwt& ebwt,            // BWT
	const BitPairReference& ref, // Reference strings
	RandomSource& rnd,           // pseudo-random generator
	WalkMetrics& wlm,            // group walk left metrics
	SwMetrics& swmSeed,          // metrics for seed extensions
	size_t& nelt_out,            // out: # elements total
    size_t maxelt,               // max elts we'll consider
	bool all)                    // report all hits?
{
    assert_eq(0, nelt_out);
	gws_.clear();
	rands_.clear();
	satpos_.clear();
	eehits_.clear();
	// First, count up the total number of satpos_, rands_, eehits_, and gws_
	// we're going to tuse
	size_t nobj = 0;
	if(!sh.exactFwEEHit().empty()) nobj++;
	if(!sh.exactRcEEHit().empty()) nobj++;
	nobj += sh.mm1EEHits().size();
    nobj = min(nobj, maxelt);
	gws_.ensure(nobj);
	rands_.ensure(nobj);
	satpos_.ensure(nobj);
	eehits_.ensure(nobj);
	size_t tot = sh.exactFwEEHit().size() + sh.exactRcEEHit().size();
	bool succ = false;
	bool firstEe = true;
    bool done = false;
	if(tot > 0) {
		bool fwFirst = true;
        // Pick fw / rc to go first in a weighted random fashion
#ifdef BOWTIE_64BIT_INDEX
		TIndexOffU rn64 = rnd.nextU64();
		TIndexOffU rn = rn64 % (uint64_t)tot;
#else
		TIndexOffU rn32 = rnd.nextU32();
		TIndexOffU rn = rn32 % (uint32_t)tot;
#endif        
		if(rn >= sh.exactFwEEHit().size()) {
			fwFirst = false;
		}
		for(int fwi = 0; fwi < 2 && !done; fwi++) {
			bool fw = ((fwi == 0) == fwFirst);
			EEHit hit = fw ? sh.exactFwEEHit() : sh.exactRcEEHit();
			if(hit.empty()) {
				continue;
			}
			assert(hit.fw == fw);
			if(hit.bot > hit.top) {
                // Possibly adjust bot and width if we would have exceeded maxelt
                TIndexOffU tops[2] = { hit.top, 0 };
                TIndexOffU bots[2] = { hit.bot, 0 };
                TIndexOffU width = hit.bot - hit.top;
                if(nelt_out + width > maxelt) {
                    TIndexOffU trim = (TIndexOffU)((nelt_out + width) - maxelt);
#ifdef BOWTIE_64BIT_INDEX
                    TIndexOffU rn = rnd.nextU64() % width;
#else
                    TIndexOffU rn = rnd.nextU32() % width;
#endif
                    TIndexOffU newwidth = width - trim;
                    if(hit.top + rn + newwidth > hit.bot) {
                        // Two pieces
                        tops[0] = hit.top + rn;
                        bots[0] = hit.bot;
                        tops[1] = hit.top;
                        bots[1] = hit.top + newwidth - (bots[0] - tops[0]);
                    } else {
                        // One piece
                        tops[0] = hit.top + rn;
                        bots[0] = tops[0] + newwidth;
                    }
                    assert_leq(bots[0], hit.bot);
                    assert_leq(bots[1], hit.bot);
                    assert_geq(bots[0], tops[0]);
                    assert_geq(bots[1], tops[1]);
                    assert_eq(newwidth, (bots[0] - tops[0]) + (bots[1] - tops[1]));
                }
                for(int i = 0; i < 2 && !done; i++) {
                    if(bots[i] <= tops[i]) break;
                    TIndexOffU width = bots[i] - tops[i];
                    TIndexOffU top = tops[i];
                    // Clear list where resolved offsets are stored
                    swmSeed.exranges++;
                    swmSeed.exrows += width;
                    if(!succ) {
                        swmSeed.exsucc++;
                        succ = true;
                    }
                    if(firstEe) {
                        salistEe_.clear();
                        pool_.clear();
                        firstEe = false;
                    }
                    // We have to be careful not to allocate excessive amounts of memory here
                    TSlice o(salistEe_, (TIndexOffU)salistEe_.size(), width);
                    for(TIndexOffU i = 0; i < width; i++) {
                        if(!salistEe_.add(pool_, OFF_MASK)) {
                            swmSeed.exooms++;
                            return false;
                        }
                    }
                    assert(!done);
                    eehits_.push_back(hit);
                    satpos_.expand();
                    satpos_.back().sat.init(SAKey(), top, OFF_MASK, o);
                    satpos_.back().sat.key.seq = MAX_U64;
                    satpos_.back().sat.key.len = (uint32_t)rd.length();
                    satpos_.back().pos.init(fw, 0, 0, (uint32_t)rd.length());
                    satpos_.back().origSz = width;
                    rands_.expand();
                    rands_.back().init(width, all);
                    gws_.expand();
					SARangeWithOffs<TSlice> sa;
					sa.topf = satpos_.back().sat.topf;
					sa.len = satpos_.back().sat.key.len;
					sa.offs = satpos_.back().sat.offs;
                    gws_.back().init(
                        ebwt,               // forward Bowtie index
                        ref,                // reference sequences
                        sa,                 // SATuple
                        rnd,                // pseudo-random generator
                        wlm);               // metrics
                    assert(gws_.back().repOk(sa));
                    nelt_out += width;
                    if(nelt_out >= maxelt) {
                        done = true;
                    }
                }
			}
		}
	}
	succ = false;
	if(!done && !sh.mm1EEHits().empty()) {
		sh.sort1mmEe(rnd);
		size_t sz = sh.mm1EEHits().size();
		for(size_t i = 0; i < sz && !done; i++) {
			EEHit hit = sh.mm1EEHits()[i];
			assert(hit.repOk(rd));
			assert(!hit.empty());
            // Possibly adjust bot and width if we would have exceeded maxelt
            TIndexOffU tops[2] = { hit.top, 0 };
            TIndexOffU bots[2] = { hit.bot, 0 };
            TIndexOffU width = hit.bot - hit.top;
            if(nelt_out + width > maxelt) {
                TIndexOffU trim = (TIndexOffU)((nelt_out + width) - maxelt);
#ifdef BOWTIE_64BIT_INDEX
                TIndexOffU rn = rnd.nextU64() % width;
#else
                TIndexOffU rn = rnd.nextU32() % width; 
#endif
                TIndexOffU newwidth = width - trim;
                if(hit.top + rn + newwidth > hit.bot) {
                    // Two pieces
                    tops[0] = hit.top + rn;
                    bots[0] = hit.bot;
                    tops[1] = hit.top;
                    bots[1] = hit.top + newwidth - (bots[0] - tops[0]);
                } else {
                    // One piece
                    tops[0] = hit.top + rn;
                    bots[0] = tops[0] + newwidth;
                }
                assert_leq(bots[0], hit.bot);
                assert_leq(bots[1], hit.bot);
                assert_geq(bots[0], tops[0]);
                assert_geq(bots[1], tops[1]);
                assert_eq(newwidth, (bots[0] - tops[0]) + (bots[1] - tops[1]));
            }
            for(int i = 0; i < 2 && !done; i++) {
                if(bots[i] <= tops[i]) break;
                TIndexOffU width = bots[i] - tops[i];
                TIndexOffU top = tops[i];
                // Clear list where resolved offsets are stored
                swmSeed.mm1ranges++;
                swmSeed.mm1rows += width;
                if(!succ) {
                    swmSeed.mm1succ++;
                    succ = true;
                }
                if(firstEe) {
                    salistEe_.clear();
                    pool_.clear();
                    firstEe = false;
                }
                TSlice o(salistEe_, (TIndexOffU)salistEe_.size(), width);
                for(size_t i = 0; i < width; i++) {
                    if(!salistEe_.add(pool_, OFF_MASK)) {
                        swmSeed.mm1ooms++;
                        return false;
                    }
                }
                eehits_.push_back(hit);
                satpos_.expand();
                satpos_.back().sat.init(SAKey(), top, OFF_MASK, o);
                satpos_.back().sat.key.seq = MAX_U64;
                satpos_.back().sat.key.len = (uint32_t)rd.length();
                satpos_.back().pos.init(hit.fw, 0, 0, (uint32_t)rd.length());
                satpos_.back().origSz = width;
                rands_.expand();
                rands_.back().init(width, all);
                gws_.expand();
				SARangeWithOffs<TSlice> sa;
				sa.topf = satpos_.back().sat.topf;
				sa.len = satpos_.back().sat.key.len;
				sa.offs = satpos_.back().sat.offs;
                gws_.back().init(
                    ebwt, // forward Bowtie index
                    ref,  // reference sequences
                    sa,   // SATuple
                    rnd,  // pseudo-random generator
                    wlm); // metrics
                assert(gws_.back().repOk(sa));
                nelt_out += width;
                if(nelt_out >= maxelt) {
                    done = true;
                }
            }
		}
	}
	return true;
}

/**
 * Extend a seed hit out on either side.  Requires that we know the seed hit's
 * offset into the read and orientation.  Also requires that we know top/bot
 * for the seed hit in both the forward and (if we want to extend to the right)
 * reverse index.
 */
void SwDriver::extend(
	const Read& rd,       // read
	const Ebwt& ebwtFw,   // Forward Bowtie index
	const Ebwt* ebwtBw,   // Backward Bowtie index
	TIndexOffU topf,        // top in fw index
	TIndexOffU botf,        // bot in fw index
	TIndexOffU topb,        // top in bw index
	TIndexOffU botb,        // bot in bw index
	bool fw,              // seed orientation
	size_t off,           // seed offset from 5' end
	size_t len,           // seed length
	PerReadMetrics& prm,  // per-read metrics
	size_t& nlex,         // # positions we can extend to left w/o edit
	size_t& nrex)         // # positions we can extend to right w/o edit
{
	TIndexOffU t[4], b[4];
	TIndexOffU tp[4], bp[4];
	SideLocus tloc, bloc;
	size_t rdlen = rd.length();
	size_t lim = fw ? off : rdlen - len - off;
	// We're about to add onto the beginning, so reverse it
#ifndef NDEBUG
	if(false) {
		// TODO: This will sometimes fail even when the extension is legitimate
		// This is because contains() comes in from one extreme or the other,
		// whereas we started from the inside and worked outwards.  This
		// affects which Ns are OK and which are not OK.

		// Have to do both because whether we can get through an N depends on
		// which direction we're coming in
		bool fwContains = ebwtFw.contains(tmp_rdseq_);
		tmp_rdseq_.reverse();
		bool bwContains = ebwtBw != NULL && ebwtBw->contains(tmp_rdseq_);
		tmp_rdseq_.reverse();
		assert(fwContains || bwContains);
	}
#endif
	ASSERT_ONLY(tmp_rdseq_.reverse());
	if(lim > 0) {
		const Ebwt *ebwt = &ebwtFw;
		assert(ebwt != NULL);
		// Extend left using forward index
		const BTDnaString& seq = fw ? rd.patFw : rd.patRc;
		// See what we get by extending 
		TIndexOffU top = topf, bot = botf;
		t[0] = t[1] = t[2] = t[3] = 0;
		b[0] = b[1] = b[2] = b[3] = 0;
		tp[0] = tp[1] = tp[2] = tp[3] = topb;
		bp[0] = bp[1] = bp[2] = bp[3] = botb;
		SideLocus tloc, bloc;
		INIT_LOCS(top, bot, tloc, bloc, *ebwt);
		for(size_t ii = 0; ii < lim; ii++) {
			// Starting to left of seed (<off) and moving left
			size_t i = 0;
			if(fw) {
				i = off - ii - 1;
			} else {
				i = rdlen - off - len - 1 - ii;
			}
			// Get char from read
			int rdc = seq.get(i);
			// See what we get by extending 
			if(bloc.valid()) {
				prm.nSdFmops++;
				t[0] = t[1] = t[2] = t[3] =
				b[0] = b[1] = b[2] = b[3] = 0;
				ebwt->mapBiLFEx(tloc, bloc, t, b, tp, bp);
				SANITY_CHECK_4TUP(t, b, tp, bp);
				int nonz = -1;
				bool abort = false;
				size_t origSz = bot - top;
				for(int j = 0; j < 4; j++) {
					if(b[j] > t[j]) {
						if(nonz >= 0) {
							abort = true;
							break;
						}
						nonz = j;
						top = t[j]; bot = b[j];
					}
				}
				assert_leq(bot - top, origSz);
				if(abort || (nonz != rdc && rdc <= 3) || bot - top < origSz) {
					break;
				}
			} else {
				assert_eq(bot, top+1);
				prm.nSdFmops++;
				int c = ebwt->mapLF1(top, tloc);
				if(c != rdc && rdc <= 3) {
					break;
				}
				bot = top + 1;
			}
			ASSERT_ONLY(tmp_rdseq_.append(rdc));
			if(++nlex == 255) {
				break;
			}
			INIT_LOCS(top, bot, tloc, bloc, *ebwt);
		}
	}
	// We're about to add onto the end, so re-reverse
	ASSERT_ONLY(tmp_rdseq_.reverse());
	lim = fw ? rdlen - len - off : off;
	if(lim > 0 && ebwtBw != NULL) {
		const Ebwt *ebwt = ebwtBw;
		assert(ebwt != NULL);
		// Extend right using backward index
		const BTDnaString& seq = fw ? rd.patFw : rd.patRc;
		// See what we get by extending 
		TIndexOffU top = topb, bot = botb;
		t[0] = t[1] = t[2] = t[3] = 0;
		b[0] = b[1] = b[2] = b[3] = 0;
		tp[0] = tp[1] = tp[2] = tp[3] = topf;
		bp[0] = bp[1] = bp[2] = bp[3] = botf;
		INIT_LOCS(top, bot, tloc, bloc, *ebwt);
		for(size_t ii = 0; ii < lim; ii++) {
			// Starting to right of seed (<off) and moving right
			size_t i;
			if(fw) {
				i = ii + len + off;
			} else {
				i = rdlen - off + ii;
			}
			// Get char from read
			int rdc = seq.get(i);
			// See what we get by extending 
			if(bloc.valid()) {
				prm.nSdFmops++;
				t[0] = t[1] = t[2] = t[3] =
				b[0] = b[1] = b[2] = b[3] = 0;
				ebwt->mapBiLFEx(tloc, bloc, t, b, tp, bp);
				SANITY_CHECK_4TUP(t, b, tp, bp);
				int nonz = -1;
				bool abort = false;
				size_t origSz = bot - top;
				for(int j = 0; j < 4; j++) {
					if(b[j] > t[j]) {
						if(nonz >= 0) {
							abort = true;
							break;
						}
						nonz = j;
						top = t[j]; bot = b[j];
					}
				}
				assert_leq(bot - top, origSz);
				if(abort || (nonz != rdc && rdc <= 3) || bot - top < origSz) {
					break;
				}
			} else {
				assert_eq(bot, top+1);
				prm.nSdFmops++;
				int c = ebwt->mapLF1(top, tloc);
				if(c != rdc && rdc <= 3) {
					break;
				}
				bot = top + 1;
			}
			ASSERT_ONLY(tmp_rdseq_.append(rdc));
			if(++nrex == 255) {
				break;
			}
			INIT_LOCS(top, bot, tloc, bloc, *ebwt);
		}
	}
#ifndef NDEBUG
	if(false) {
		// TODO: This will sometimes fail even when the extension is legitimate
		// This is because contains() comes in from one extreme or the other,
		// whereas we started from the inside and worked outwards.  This
		// affects which Ns are OK and which are not OK.
	
		// Have to do both because whether we can get through an N depends on
		// which direction we're coming in
		bool fwContains = ebwtFw.contains(tmp_rdseq_);
		tmp_rdseq_.reverse();
		bool bwContains = ebwtBw != NULL && ebwtBw->contains(tmp_rdseq_);
		tmp_rdseq_.reverse();
		assert(fwContains || bwContains);
	}
#endif
	assert_lt(nlex, rdlen);
	assert_lt(nrex, rdlen);
	return;
}

/**
 * Given seed results, set up all of our state for resolving and keeping
 * track of reference offsets for hits.
 */
void SwDriver::prioritizeSATups(
	const Read& read,            // read
	SeedResults& sh,             // seed hits to extend into full alignments
	const Ebwt& ebwtFw,          // BWT
	const Ebwt* ebwtBw,          // BWT
	const BitPairReference& ref, // Reference strings
	int seedmms,                 // # mismatches allowed in seed
	size_t maxelt,               // max elts we'll consider
	bool doExtend,               // do extension of seed hits?
	bool lensq,                  // square length in weight calculation
	bool szsq,                   // square range size in weight calculation
	size_t nsm,                  // if range as <= nsm elts, it's "small"
	AlignmentCacheIface& ca,     // alignment cache for seed hits
	RandomSource& rnd,           // pseudo-random generator
	WalkMetrics& wlm,            // group walk left metrics
	PerReadMetrics& prm,         // per-read metrics
	size_t& nelt_out,            // out: # elements total
	bool all)                    // report all hits?
{
	const size_t nonz = sh.nonzeroOffsets(); // non-zero positions
	const int matei = (read.mate <= 1 ? 0 : 1);
	satups_.clear();
	gws_.clear();
	rands_.clear();
	rands2_.clear();
	satpos_.clear();
	satpos2_.clear();
	size_t nrange = 0, nelt = 0, nsmall = 0, nsmall_elts = 0;
	bool keepWhole = false;
	EList<SATupleAndPos, 16>& satpos = keepWhole ? satpos_ : satpos2_;
	for(size_t i = 0; i < nonz; i++) {
		bool fw = true;
		uint32_t offidx = 0, rdoff = 0, seedlen = 0;
		QVal qv = sh.hitsByRank(i, offidx, rdoff, fw, seedlen);
		assert(qv.valid());
		assert(!qv.empty());
		assert(qv.repOk(ca.current()));
		ca.queryQval(qv, satups_, nrange, nelt);
		for(size_t j = 0; j < satups_.size(); j++) {
			const size_t sz = satups_[j].size();
			// Check whether this hit occurs inside the extended boundaries of
			// another hit we already processed for this read.
			if(seedmms == 0) {
				// See if we're covered by a previous extended seed hit
				EList<ExtendRange>& range =
					fw ? seedExRangeFw_[matei] : seedExRangeRc_[matei];
				bool skip = false;
				for(size_t k = 0; k < range.size(); k++) {
					size_t p5 = range[k].off;
					size_t len = range[k].len;
					if(p5 <= rdoff && p5 + len >= (rdoff + seedlen)) {
						if(sz <= range[k].sz) {
							skip = true;
							break;
						}
					}
				}
				if(skip) {
					assert_gt(nrange, 0);
					nrange--;
					assert_geq(nelt, sz);
					nelt -= sz;
					continue; // Skip this seed
				}
			}
			satpos.expand();
			satpos.back().sat = satups_[j];
			satpos.back().origSz = sz;
			satpos.back().pos.init(fw, offidx, rdoff, seedlen);
			if(sz <= nsm) {
				nsmall++;
				nsmall_elts += sz;
			}
			satpos.back().nlex = satpos.back().nrex = 0;
#ifndef NDEBUG
			tmp_rdseq_.clear();
			uint64_t key = satpos.back().sat.key.seq;
			for(size_t k = 0; k < seedlen; k++) {
				int c = (int)(key & 3);
				tmp_rdseq_.append(c);
				key >>= 2;
			}
			tmp_rdseq_.reverse();
#endif
			size_t nlex = 0, nrex = 0;
			if(doExtend) {
				extend(
					read,
					ebwtFw,
					ebwtBw,
					satpos.back().sat.topf,
					(TIndexOffU)(satpos.back().sat.topf + sz),
					satpos.back().sat.topb,
					(TIndexOffU)(satpos.back().sat.topb + sz),
					fw,
					rdoff,
					seedlen,
					prm,
					nlex,
					nrex);
			}
			satpos.back().nlex = nlex;
			satpos.back().nrex = nrex;
			if(seedmms == 0 && (nlex > 0 || nrex > 0)) {
				assert_geq(rdoff, (fw ? nlex : nrex));
				size_t p5 = rdoff - (fw ? nlex : nrex);
				EList<ExtendRange>& range =
					fw ? seedExRangeFw_[matei] : seedExRangeRc_[matei];
				range.expand();
				range.back().off = p5;
				range.back().len = seedlen + nlex + nrex;
				range.back().sz = sz;
			}
		}
		satups_.clear();
	}
	assert_leq(nsmall, nrange);
	nelt_out = nelt; // return the total number of elements
	assert_eq(nrange, satpos.size());
	satpos.sort();
	if(keepWhole) {
		gws_.ensure(nrange);
		rands_.ensure(nrange);
		for(size_t i = 0; i < nrange; i++) {
			gws_.expand();
			SARangeWithOffs<TSlice> sa;
			sa.topf = satpos_.back().sat.topf;
			sa.len = satpos_.back().sat.key.len;
			sa.offs = satpos_.back().sat.offs;
			gws_.back().init(
				ebwtFw, // forward Bowtie index
				ref,    // reference sequences
				sa,     // SA tuples: ref hit, salist range
				rnd,    // pseudo-random generator
				wlm);   // metrics
			assert(gws_.back().initialized());
			rands_.expand();
			rands_.back().init(satpos_[i].sat.size(), all);
		}
		return;
	}
	// Resize satups_ list so that ranges having elements that we might
	// possibly explore are present
	satpos_.ensure(min(maxelt, nelt));
	gws_.ensure(min(maxelt, nelt));
	rands_.ensure(min(maxelt, nelt));
	rands2_.ensure(min(maxelt, nelt));
	size_t nlarge_elts = nelt - nsmall_elts;
	if(maxelt < nelt) {
		size_t diff = nelt - maxelt;
		if(diff >= nlarge_elts) {
			nlarge_elts = 0;
		} else {
			nlarge_elts -= diff;
		}
	}
	size_t nelt_added = 0;
	// Now we have a collection of ranges in satpos2_.  Now we want to decide
	// how we explore elements from them.  The basic idea is that: for very
	// small guys, where "very small" means that the size of the range is less
	// than or equal to the parameter 'nsz', we explore them in their entirety
	// right away.  For the rest, we want to select in a way that is (a)
	// random, and (b) weighted toward examining elements from the smaller
	// ranges more frequently (and first).
	//
	// 1. do the smalls
	for(size_t j = 0; j < nsmall && nelt_added < maxelt; j++) {
		satpos_.expand();
		satpos_.back() = satpos2_[j];
		gws_.expand();
		SARangeWithOffs<TSlice> sa;
		sa.topf = satpos_.back().sat.topf;
		sa.len = satpos_.back().sat.key.len;
		sa.offs = satpos_.back().sat.offs;
		gws_.back().init(
			ebwtFw, // forward Bowtie index
			ref,    // reference sequences
			sa,     // SA tuples: ref hit, salist range
			rnd,    // pseudo-random generator
			wlm);   // metrics
		assert(gws_.back().initialized());
		rands_.expand();
		rands_.back().init(satpos_.back().sat.size(), all);
		nelt_added += satpos_.back().sat.size();
#ifndef NDEBUG
		for(size_t k = 0; k < satpos_.size()-1; k++) {
			assert(!(satpos_[k] == satpos_.back()));
		}
#endif
	}
	if(nelt_added >= maxelt || nsmall == satpos2_.size()) {
		nelt_out = nelt_added;
		return;
	}
	// 2. do the non-smalls
	// Initialize the row sampler
	rowsamp_.init(satpos2_, nsmall, satpos2_.size(), lensq, szsq);
	// Initialize the random choosers
	rands2_.resize(satpos2_.size());
	for(size_t j = 0; j < satpos2_.size(); j++) {
		rands2_[j].reset();
	}
	while(nelt_added < maxelt && nelt_added < nelt) {
		// Pick a non-small range to sample from
		size_t ri = rowsamp_.next(rnd) + nsmall;
		assert_geq(ri, nsmall);
		assert_lt(ri, satpos2_.size());
		// Initialize random element chooser for that range
		if(!rands2_[ri].inited()) {
			rands2_[ri].init(satpos2_[ri].sat.size(), all);
			assert(!rands2_[ri].done());
		}
		assert(!rands2_[ri].done());
		// Choose an element from the range
		size_t r = rands2_[ri].next(rnd);
		if(rands2_[ri].done()) {
			// Tell the row sampler this range is done
			rowsamp_.finishedRange(ri - nsmall);
		}
		// Add the element to the satpos_ list
		SATuple sat;
		TSlice o;
		o.init(satpos2_[ri].sat.offs, r, r+1);
		sat.init(satpos2_[ri].sat.key, (TIndexOffU)(satpos2_[ri].sat.topf + r), OFF_MASK, o);
		satpos_.expand();
		satpos_.back().sat = sat;
		satpos_.back().origSz = satpos2_[ri].origSz;
		satpos_.back().pos = satpos2_[ri].pos;
		// Initialize GroupWalk object
		gws_.expand();
		SARangeWithOffs<TSlice> sa;
		sa.topf = sat.topf;
		sa.len = sat.key.len;
		sa.offs = sat.offs;
		gws_.back().init(
			ebwtFw, // forward Bowtie index
			ref,    // reference sequences
			sa,     // SA tuples: ref hit, salist range
			rnd,    // pseudo-random generator
			wlm);   // metrics
		assert(gws_.back().initialized());
		// Initialize random selector
		rands_.expand();
		rands_.back().init(1, all);
		nelt_added++;
	}
	nelt_out = nelt_added;
	return;
}

enum {
	FOUND_NONE = 0,
	FOUND_EE,
	FOUND_UNGAPPED,
};

/**
 * Given a collection of SeedHits for a single read, extend seed alignments
 * into full alignments.  Where possible, try to avoid redundant offset lookups
 * and dynamic programming wherever possible.  Optionally report alignments to
 * a AlnSinkWrap object as they are discovered.
 *
 * If 'reportImmediately' is true, returns true iff a call to msink->report()
 * returned true (indicating that the reporting policy is satisfied and we can
 * stop).  Otherwise, returns false.
 */
int SwDriver::extendSeeds(
	Read& rd,                    // read to align
	bool mate1,                  // true iff rd is mate #1
	SeedResults& sh,             // seed hits to extend into full alignments
	const Ebwt& ebwtFw,          // BWT
	const Ebwt* ebwtBw,          // BWT'
	const BitPairReference& ref, // Reference strings
	SwAligner& swa,              // dynamic programming aligner
	const Scoring& sc,           // scoring scheme
	int seedmms,                 // # mismatches allowed in seed
	int seedlen,                 // length of seed
	int seedival,                // interval between seeds
	TAlScore& minsc,             // minimum score for anchor
	int nceil,                   // maximum # Ns permitted in reference portion
	size_t maxhalf,  	         // max width in either direction for DP tables
	bool doUngapped,             // do ungapped alignment
	size_t maxIters,             // stop after this many seed-extend loop iters
	size_t maxUg,                // stop after this many ungaps
	size_t maxDp,                // stop after this many dps
	size_t maxUgStreak,          // stop after streak of this many ungap fails
	size_t maxDpStreak,          // stop after streak of this many dp fails
	bool doExtend,               // do seed extension
	bool enable8,                // use 8-bit SSE where possible
	size_t cminlen,              // use checkpointer if read longer than this
	size_t cpow2,                // interval between diagonals to checkpoint
	bool doTri,                  // triangular mini-fills?
	int tighten,                 // -M score tightening mode
	AlignmentCacheIface& ca,     // alignment cache for seed hits
	RandomSource& rnd,           // pseudo-random source
	WalkMetrics& wlm,            // group walk left metrics
	SwMetrics& swmSeed,          // DP metrics for seed-extend
	PerReadMetrics& prm,         // per-read metrics
	AlnSinkWrap* msink,          // AlnSink wrapper for multiseed-style aligner
	bool reportImmediately,      // whether to report hits immediately to msink
	bool& exhaustive)            // set to true iff we searched all seeds exhaustively
{
	bool all = msink->allHits();

	assert(!reportImmediately || msink != NULL);
	assert(!reportImmediately || !msink->maxed());

	assert_geq(nceil, 0);
	assert_leq((size_t)nceil, rd.length());
	
	// Calculate the largest possible number of read and reference gaps
	const size_t rdlen = rd.length();
	TAlScore perfectScore = sc.perfectScore(rdlen);

	DynProgFramer dpframe(!gReportOverhangs);
	swa.reset();

	// Initialize a set of GroupWalks, one for each seed.  Also, intialize the
	// accompanying lists of reference seed hits (satups*)
	const size_t nsm = 5;
	const size_t nonz = sh.nonzeroOffsets(); // non-zero positions
	size_t eeHits = sh.numE2eHits();
	bool eeMode = eeHits > 0;
	bool firstEe = true;
	bool firstExtend = true;

	// Reset all the counters related to streaks
	prm.nEeFail = 0;
	prm.nUgFail = 0;
	prm.nDpFail = 0;

	size_t nelt = 0, neltLeft = 0;
	size_t rows = rdlen;
	size_t eltsDone = 0;
	// cerr << "===" << endl;
	while(true) {
		if(eeMode) {
			if(firstEe) {
				firstEe = false;
				eeMode = eeSaTups(
					rd,           // read
					sh,           // seed hits to extend into full alignments
					ebwtFw,       // BWT
					ref,          // Reference strings
					rnd,          // pseudo-random generator
					wlm,          // group walk left metrics
					swmSeed,      // seed-extend metrics
					nelt,         // out: # elements total
                    maxIters,     // max # to report
					all);         // report all hits?
				assert_eq(gws_.size(), rands_.size());
				assert_eq(gws_.size(), satpos_.size());
			} else {
				eeMode = false;
			}
		}
		if(!eeMode) {
			if(nonz == 0) {
				return EXTEND_EXHAUSTED_CANDIDATES; // No seed hits!  Bail.
			}
			if(minsc == perfectScore) {
				return EXTEND_PERFECT_SCORE; // Already found all perfect hits!
			}
			if(firstExtend) {
				nelt = 0;
				prioritizeSATups(
					rd,            // read
					sh,            // seed hits to extend into full alignments
					ebwtFw,        // BWT
					ebwtBw,        // BWT'
					ref,           // Reference strings
					seedmms,       // # seed mismatches allowed
					maxIters,      // max rows to consider per position
					doExtend,      // extend out seeds
					true,          // square extended length
					true,          // square SA range size
					nsm,           // smallness threshold
					ca,            // alignment cache for seed hits
					rnd,           // pseudo-random generator
					wlm,           // group walk left metrics
					prm,           // per-read metrics
					nelt,          // out: # elements total
					all);          // report all hits?
				assert_eq(gws_.size(), rands_.size());
				assert_eq(gws_.size(), satpos_.size());
				neltLeft = nelt;
				firstExtend = false;
			}
			if(neltLeft == 0) {
				// Finished examining gapped candidates
				break;
			}
		}
		for(size_t i = 0; i < gws_.size(); i++) {
			if(eeMode && eehits_[i].score < minsc) {
				return EXTEND_PERFECT_SCORE;
			}
			bool is_small       = satpos_[i].sat.size() < nsm;
			bool fw             = satpos_[i].pos.fw;
			uint32_t rdoff      = satpos_[i].pos.rdoff;
			uint32_t seedhitlen = satpos_[i].pos.seedlen;
			if(!fw) {
				// 'rdoff' and 'offidx' are with respect to the 5' end of
				// the read.  Here we convert rdoff to be with respect to
				// the upstream (3') end of ther read.
				rdoff = (uint32_t)(rdlen - rdoff - seedhitlen);
			}
			bool first = true;
			// If the range is small, investigate all elements now.  If the
			// range is large, just investigate one and move on - we might come
			// back to this range later.
			size_t riter = 0;
			while(!rands_[i].done() && (first || is_small || eeMode)) {
				assert(!gws_[i].done());
				riter++;
				if(minsc == perfectScore) {
					if(!eeMode || eehits_[i].score < perfectScore) {
						return EXTEND_PERFECT_SCORE;
					}
				} else if(eeMode && eehits_[i].score < minsc) {
					break;
				}
				if(prm.nExDps >= maxDp || prm.nMateDps >= maxDp) {
					return EXTEND_EXCEEDED_HARD_LIMIT;
				}
				if(prm.nExUgs >= maxUg || prm.nMateUgs >= maxUg) {
					return EXTEND_EXCEEDED_HARD_LIMIT;
				}
				if(prm.nExIters >= maxIters) {
					return EXTEND_EXCEEDED_HARD_LIMIT;
				}
				prm.nExIters++;
				first = false;
				// Resolve next element offset
				WalkResult wr;
				size_t elt = rands_[i].next(rnd);
				//cerr << "elt=" << elt << endl;
				SARangeWithOffs<TSlice> sa;
				sa.topf = satpos_[i].sat.topf;
				sa.len = satpos_[i].sat.key.len;
				sa.offs = satpos_[i].sat.offs;
				gws_[i].advanceElement((TIndexOffU)elt, ebwtFw, ref, sa, gwstate_, wr, wlm, prm);
				eltsDone++;
				if(!eeMode) {
					assert_gt(neltLeft, 0);
					neltLeft--;
				}
				assert_neq(OFF_MASK, wr.toff);
				TIndexOffU tidx = 0, toff = 0, tlen = 0;
				bool straddled = false;
				ebwtFw.joinedToTextOff(
					wr.elt.len,
					wr.toff,
					tidx,
					toff,
					tlen,
					eeMode,     // reject straddlers?
					straddled); // did it straddle?
				if(tidx == OFF_MASK) {
					// The seed hit straddled a reference boundary so the seed hit
					// isn't valid
					continue;
				}
#ifndef NDEBUG
				if(!eeMode && !straddled) { // Check that seed hit matches reference
					uint64_t key = satpos_[i].sat.key.seq;
					for(size_t k = 0; k < wr.elt.len; k++) {
						int c = ref.getBase(tidx, toff + wr.elt.len - k - 1);
						assert_leq(c, 3);
						int ck = (int)(key & 3);
						key >>= 2;
						assert_eq(c, ck);
					}
				}
#endif
				// Find offset of alignment's upstream base assuming net gaps=0
				// between beginning of read and beginning of seed hit
				int64_t refoff = (int64_t)toff - rdoff;
				// Coordinate of the seed hit w/r/t the pasted reference string
				Coord refcoord(tidx, refoff, fw);
				if(seenDiags1_.locusPresent(refcoord)) {
					// Already handled alignments seeded on this diagonal
					prm.nRedundants++;
					swmSeed.rshit++;
					continue;
				}
				// Now that we have a seed hit, there are many issues to solve
				// before we have a completely framed dynamic programming problem.
				// They include:
				//
				// 1. Setting reference offsets on either side of the seed hit,
				//    accounting for where the seed occurs in the read
				// 2. Adjusting the width of the banded dynamic programming problem
				//    and adjusting reference bounds to allow for gaps in the
				//    alignment
				// 3. Accounting for the edges of the reference, which can impact
				//    the width of the DP problem and reference bounds.
				// 4. Perhaps filtering the problem down to a smaller problem based
				//    on what DPs we've already solved for this read
				//
				// We do #1 here, since it is simple and we have all the seed-hit
				// information here.  #2 and #3 are handled in the DynProgFramer.
				int readGaps = 0, refGaps = 0;
				bool ungapped = false;
				if(!eeMode) {
					readGaps = sc.maxReadGaps(minsc, rdlen);
					refGaps  = sc.maxRefGaps(minsc, rdlen);
					ungapped = (readGaps == 0 && refGaps == 0);
				}
				int state = FOUND_NONE;
				bool found = false;
				if(eeMode) {
					resEe_.reset();
					resEe_.alres.reset();
					const EEHit& h = eehits_[i];
					assert_leq(h.score, perfectScore);
					resEe_.alres.setScore(AlnScore(h.score, h.ns(), 0));
					resEe_.alres.setShape(
						refcoord.ref(),  // ref id
						refcoord.off(),  // 0-based ref offset
						tlen,            // length of reference
						fw,              // aligned to Watson?
						rdlen,           // read length
						true,            // pretrim soft?
						0,               // pretrim 5' end
						0,               // pretrim 3' end
						true,            // alignment trim soft?
						0,               // alignment trim 5' end
						0);              // alignment trim 3' end
					resEe_.alres.setRefNs(h.refns());
					if(h.mms() > 0) {
						assert_eq(1, h.mms());
						assert_lt(h.e1.pos, rd.length());
						resEe_.alres.ned().push_back(h.e1);
					}
					assert(resEe_.repOk(rd));
					state = FOUND_EE;
					found = true;
					Interval refival(refcoord, 1);
					seenDiags1_.add(refival);
				} else if(doUngapped && ungapped) {
					resUngap_.reset();
					int al = swa.ungappedAlign(
						fw ? rd.patFw : rd.patRc,
						fw ? rd.qual  : rd.qualRev,
						refcoord,
						ref,
						tlen,
						sc,
						gReportOverhangs,
						minsc,
						resUngap_);
					Interval refival(refcoord, 1);
					seenDiags1_.add(refival);
					prm.nExUgs++;
					if(al == 0) {
						prm.nExUgFails++;
						prm.nUgFail++;
						if(prm.nUgFail >= maxUgStreak) {
							return EXTEND_EXCEEDED_SOFT_LIMIT;
						}
						swmSeed.ungapfail++;
						continue;
					} else if(al == -1) {
						prm.nExUgFails++;
						prm.nUgFail++; // count this as failure
						if(prm.nUgFail >= maxUgStreak) {
							return EXTEND_EXCEEDED_SOFT_LIMIT;
						}
						swmSeed.ungapnodec++;
					} else {
						prm.nExUgSuccs++;
						prm.nUgLastSucc = prm.nExUgs-1;
						if(prm.nUgFail > prm.nUgFailStreak) {
							prm.nUgFailStreak = prm.nUgFail;
						}
						prm.nUgFail = 0;
						found = true;
						state = FOUND_UNGAPPED;
						swmSeed.ungapsucc++;
					}
				}
				int64_t pastedRefoff = (int64_t)wr.toff - rdoff;
				DPRect rect;
				if(state == FOUND_NONE) {
					found = dpframe.frameSeedExtensionRect(
						refoff,   // ref offset implied by seed hit assuming no gaps
						rows,     // length of read sequence used in DP table
						tlen,     // length of reference
						readGaps, // max # of read gaps permitted in opp mate alignment
						refGaps,  // max # of ref gaps permitted in opp mate alignment
						(size_t)nceil, // # Ns permitted
						maxhalf,  // max width in either direction
						rect);    // DP rectangle
					assert(rect.repOk());
					// Add the seed diagonal at least
					seenDiags1_.add(Interval(refcoord, 1));
					if(!found) {
						continue;
					}
				}
				int64_t leftShift = refoff - rect.refl;
				size_t nwindow = 0;
				if((int64_t)toff >= rect.refl) {
					nwindow = (size_t)(toff - rect.refl);
				}
				// NOTE: We might be taking off more than we should because the
				// pasted string omits non-A/C/G/T characters, but we included them
				// when calculating leftShift.  We'll account for this later.
				pastedRefoff -= leftShift;
				size_t nsInLeftShift = 0;
				if(state == FOUND_NONE) {
					if(!swa.initedRead()) {
						// Initialize the aligner with a new read
						swa.initRead(
							rd.patFw,  // fw version of query
							rd.patRc,  // rc version of query
							rd.qual,   // fw version of qualities
							rd.qualRev,// rc version of qualities
							0,         // off of first char in 'rd' to consider
							rdlen,     // off of last char (excl) in 'rd' to consider
							sc);       // scoring scheme
					}
					swa.initRef(
						fw,        // whether to align forward or revcomp read
						tidx,      // reference aligned against
						rect,      // DP rectangle
						ref,       // Reference strings
						tlen,      // length of reference sequence
						sc,        // scoring scheme
						minsc,     // minimum score permitted
						enable8,   // use 8-bit SSE if possible?
						cminlen,   // minimum length for using checkpointing scheme
						cpow2,     // interval b/t checkpointed diags; 1 << this
						doTri,     // triangular mini-fills?
						true,      // this is a seed extension - not finding a mate
						nwindow,
						nsInLeftShift);
					// Because of how we framed the problem, we can say that we've
					// exhaustively scored the seed diagonal as well as maxgaps
					// diagonals on either side
					Interval refival(tidx, 0, fw, 0);
					rect.initIval(refival);
					seenDiags1_.add(refival);
					// Now fill the dynamic programming matrix and return true iff
					// there is at least one valid alignment
					TAlScore bestCell = std::numeric_limits<TAlScore>::min();
					found = swa.align(bestCell);
					swmSeed.tallyGappedDp(readGaps, refGaps);
					prm.nExDps++;
					if(!found) {
						prm.nExDpFails++;
						prm.nDpFail++;
						if(prm.nDpFail >= maxDpStreak) {
							return EXTEND_EXCEEDED_SOFT_LIMIT;
						}
						if(bestCell > std::numeric_limits<TAlScore>::min() && bestCell > prm.bestLtMinscMate1) {
							prm.bestLtMinscMate1 = bestCell;
						}
						continue; // Look for more anchor alignments
					} else {
						prm.nExDpSuccs++;
						prm.nDpLastSucc = prm.nExDps-1;
						if(prm.nDpFail > prm.nDpFailStreak) {
							prm.nDpFailStreak = prm.nDpFail;
						}
						prm.nDpFail = 0;
					}
				}
				bool firstInner = true;
				while(true) {
					assert(found);
					SwResult *res = NULL;
					if(state == FOUND_EE) {
						if(!firstInner) {
							break;
						}
						res = &resEe_;
					} else if(state == FOUND_UNGAPPED) {
						if(!firstInner) {
							break;
						}
						res = &resUngap_;
					} else {
						resGap_.reset();
						assert(resGap_.empty());
						if(swa.done()) {
							break;
						}
						swa.nextAlignment(resGap_, minsc, rnd);
						found = !resGap_.empty();
						if(!found) {
							break;
						}
						res = &resGap_;
					}
					assert(res != NULL);
					firstInner = false;
					assert(res->alres.matchesRef(
						rd,
						ref,
						tmp_rf_,
						tmp_rdseq_,
						tmp_qseq_,
						raw_refbuf_,
						raw_destU32_,
						raw_matches_));
					Interval refival(tidx, 0, fw, tlen);
					assert_gt(res->alres.refExtent(), 0);
					if(gReportOverhangs &&
					   !refival.containsIgnoreOrient(res->alres.refival()))
					{
						res->alres.clipOutside(true, 0, tlen);
						if(res->alres.refExtent() == 0) {
							continue;
						}
					}
					assert(gReportOverhangs ||
					       refival.containsIgnoreOrient(res->alres.refival()));
					// Did the alignment fall entirely outside the reference?
					if(!refival.overlapsIgnoreOrient(res->alres.refival())) {
						continue;
					}
					// Is this alignment redundant with one we've seen previously?
					if(redAnchor_.overlap(res->alres)) {
						// Redundant with an alignment we found already
						continue;
					}
					redAnchor_.add(res->alres);
					// Annotate the AlnRes object with some key parameters
					// that were used to obtain the alignment.
					res->alres.setParams(
						seedmms,   // # mismatches allowed in seed
						seedlen,   // length of seed
						seedival,  // interval between seeds
						minsc);    // minimum score for valid alignment
					
					if(reportImmediately) {
						assert(msink != NULL);
						assert(res->repOk());
						// Check that alignment accurately reflects the
						// reference characters aligned to
						assert(res->alres.matchesRef(
							rd,
							ref,
							tmp_rf_,
							tmp_rdseq_,
							tmp_qseq_,
							raw_refbuf_,
							raw_destU32_,
							raw_matches_));
						// Report an unpaired alignment
						assert(!msink->maxed());
						if(msink->report(
							0,
							mate1 ? &res->alres : NULL,
							mate1 ? NULL : &res->alres))
						{
							// Short-circuited because a limit, e.g. -k, -m or
							// -M, was exceeded
							return EXTEND_POLICY_FULFILLED;
						}
						if(tighten > 0 &&
						   msink->Mmode() &&
						   msink->hasSecondBestUnp1())
						{
							if(tighten == 1) {
								if(msink->bestUnp1() >= minsc) {
									minsc = msink->bestUnp1();
									if(minsc < perfectScore &&
									   msink->bestUnp1() == msink->secondBestUnp1())
									{
										minsc++;
									}
								}
							} else if(tighten == 2) {
								if(msink->secondBestUnp1() >= minsc) {
									minsc = msink->secondBestUnp1();
									if(minsc < perfectScore) {
										minsc++;
									}
								}
							} else {
								TAlScore diff = msink->bestUnp1() - msink->secondBestUnp1();
								TAlScore bot = msink->secondBestUnp1() + ((diff*3)/4);
								if(bot >= minsc) {
									minsc = bot;
									if(minsc < perfectScore) {
										minsc++;
									}
								}
							}
							assert_leq(minsc, perfectScore);
						}
					}
				}

				// At this point we know that we aren't bailing, and will
				// continue to resolve seed hits.  

			} // while(!gws_[i].done())
		}
	}
	// Short-circuited because a limit, e.g. -k, -m or -M, was exceeded
	return EXTEND_EXHAUSTED_CANDIDATES;
}

/**
 * Given a collection of SeedHits for both mates in a read pair, extend seed
 * alignments into full alignments and then look for the opposite mate using
 * dynamic programming.  Where possible, try to avoid redundant offset lookups.
 * Optionally report alignments to a AlnSinkWrap object as they are discovered.
 *
 * If 'reportImmediately' is true, returns true iff a call to
 * msink->report() returned true (indicating that the reporting
 * policy is satisfied and we can stop).  Otherwise, returns false.
 *
 * REDUNDANT SEED HITS
 *
 * See notes at top of aligner_sw_driver.h.
 *
 * REDUNDANT ALIGNMENTS
 *
 * See notes at top of aligner_sw_driver.h.
 *
 * MIXING PAIRED AND UNPAIRED ALIGNMENTS
 *
 * There are distinct paired-end alignment modes for the cases where (a) the
 * user does or does not want to see unpaired alignments for individual mates
 * when there are no reportable paired-end alignments involving both mates, and
 * (b) the user does or does not want to see discordant paired-end alignments.
 * The modes have implications for this function and for the AlnSinkWrap, since
 * it affects when we're "done."  Also, whether the user has asked us to report
 * discordant alignments affects whether and how much searching for unpaired
 * alignments we must do (i.e. if there are no paired-end alignments, we must
 * at least do -m 1 for both mates).
 *
 * Mode 1: Just concordant paired-end.  Print only concordant paired-end
 * alignments.  As soon as any limits (-k/-m/-M) are reached, stop.
 *
 * Mode 2: Concordant and discordant paired-end.  If -k/-m/-M limits are
 * reached for paired-end alignments, stop.  Otherwise, if no paired-end
 * alignments are found, align both mates in an unpaired -m 1 fashion.  If
 * there is exactly one unpaired alignment for each mate, report the
 * combination as a discordant alignment.
 *
 * Mode 3: Concordant paired-end if possible, otherwise unpaired.  If -k/-M
 * limit is reached for paired-end alignmnts, stop.  If -m limit is reached for
 * paired-end alignments or no paired-end alignments are found, align both
 * mates in an unpaired fashion.  All the same settings governing validity and
 * reportability in paired-end mode apply here too (-k/-m/-M/etc).
 *
 * Mode 4: Concordant or discordant paired-end if possible, otherwise unpaired.
 * If -k/-M limit is reached for paired-end alignmnts, stop.  If -m limit is
 * reached for paired-end alignments or no paired-end alignments are found,
 * align both mates in an unpaired fashion.  If the -m limit was reached, there
 * is no need to search for a discordant alignment, and unapired alignment can
 * proceed as in Mode 3.  If no paired-end alignments were found, then unpaired
 * alignment proceeds as in Mode 3 but with this caveat: alignment must be at
 * least as thorough as dictated by -m 1 up until the point where
 *
 * Print paired-end alignments when there are reportable paired-end
 * alignments, otherwise report reportable unpaired alignments.  If -k limit is
 * reached for paired-end alignments, stop.  If -m/-M limit is reached for
 * paired-end alignments, stop searching for paired-end alignments and look
 * only for unpaired alignments.  If searching only for unpaired alignments,
 * respect -k/-m/-M limits separately for both mates.
 *
 * The return value from the AlnSinkWrap's report member function must be
 * specific enough to distinguish between:
 *
 * 1. Stop searching for paired-end alignments
 * 2. Stop searching for alignments for unpaired alignments for mate #1
 * 3. Stop searching for alignments for unpaired alignments for mate #2
 * 4. Stop searching for any alignments
 *
 * Note that in Mode 2, options affecting validity and reportability of
 * alignments apply .  E.g. if -m 1 is specified
 *
 * WORKFLOW
 *
 * Our general approach to finding paired and unpaired alignments here
 * is as follows:
 *
 * - For mate in mate1, mate2:
 *   - For each seed hit in mate:
 *     - Try to extend it into a full alignment; if we can't, continue
 *       to the next seed hit
 *     - Look for alignment for opposite mate; if we can't find one,
 *     - 
 *     - 
 *
 */
int SwDriver::extendSeedsPaired(
	Read& rd,                    // mate to align as anchor
	Read& ord,                   // mate to align as opposite
	bool anchor1,                // true iff anchor mate is mate1
	bool oppFilt,                // true iff opposite mate was filtered out
	SeedResults& sh,             // seed hits for anchor
	const Ebwt& ebwtFw,          // BWT
	const Ebwt* ebwtBw,          // BWT'
	const BitPairReference& ref, // Reference strings
	SwAligner& swa,              // dynamic programming aligner for anchor
	SwAligner& oswa,             // dynamic programming aligner for opposite
	const Scoring& sc,           // scoring scheme
	const PairedEndPolicy& pepol,// paired-end policy
	int seedmms,                 // # mismatches allowed in seed
	int seedlen,                 // length of seed
	int seedival,                // interval between seeds
	TAlScore& minsc,             // minimum score for valid anchor aln
	TAlScore& ominsc,            // minimum score for valid opposite aln
	int nceil,                   // max # Ns permitted in ref for anchor
	int onceil,                  // max # Ns permitted in ref for opposite
	bool nofw,                   // don't align forward read
	bool norc,                   // don't align revcomp read
	size_t maxhalf,              // max width in either direction for DP tables
	bool doUngapped,             // do ungapped alignment
	size_t maxIters,             // stop after this many seed-extend loop iters
	size_t maxUg,                // stop after this many ungaps
	size_t maxDp,                // stop after this many dps
	size_t maxEeStreak,          // stop after streak of this many end-to-end fails
	size_t maxUgStreak,          // stop after streak of this many ungap fails
	size_t maxDpStreak,          // stop after streak of this many dp fails
	size_t maxMateStreak,        // stop seed range after N mate-find fails
	bool doExtend,               // do seed extension
	bool enable8,                // use 8-bit SSE where possible
	size_t cminlen,              // use checkpointer if read longer than this
	size_t cpow2,                // interval between diagonals to checkpoint
	bool doTri,                  // triangular mini-fills?
	int tighten,                 // -M score tightening mode
	AlignmentCacheIface& ca,     // alignment cache for seed hits
	RandomSource& rnd,           // pseudo-random source
	WalkMetrics& wlm,            // group walk left metrics
	SwMetrics& swmSeed,          // DP metrics for seed-extend
	SwMetrics& swmMate,          // DP metrics for mate finidng
	PerReadMetrics& prm,         // per-read metrics
	AlnSinkWrap* msink,          // AlnSink wrapper for multiseed-style aligner
	bool swMateImmediately,      // whether to look for mate immediately
	bool reportImmediately,      // whether to report hits immediately to msink
	bool discord,                // look for discordant alignments?
	bool mixed,                  // look for unpaired as well as paired alns?
	bool& exhaustive)
{
	bool all = msink->allHits();

	assert(!reportImmediately || msink != NULL);
	assert(!reportImmediately || !msink->maxed());
	assert(!msink->state().doneWithMate(anchor1));

	assert_geq(nceil, 0);
	assert_geq(onceil, 0);
	assert_leq((size_t)nceil,  rd.length());
	assert_leq((size_t)onceil, ord.length());

	const size_t rdlen  = rd.length();
	const size_t ordlen = ord.length();
	const TAlScore perfectScore = sc.perfectScore(rdlen);
	const TAlScore operfectScore = sc.perfectScore(ordlen);

	assert_leq(minsc, perfectScore);
	assert(oppFilt || ominsc <= operfectScore);

	TAlScore bestPairScore = perfectScore + operfectScore;
	if(tighten > 0 && msink->Mmode() && msink->hasSecondBestPair()) {
		// Paired-end alignments should have at least this score from now
		TAlScore ps;
		if(tighten == 1) {
			ps = msink->bestPair();
		} else if(tighten == 2) {
			ps = msink->secondBestPair();
		} else {
			TAlScore diff = msink->bestPair() - msink->secondBestPair();
			ps = msink->secondBestPair() + (diff * 3)/4;
		}
		if(tighten == 1 && ps < bestPairScore &&
		   msink->bestPair() == msink->secondBestPair())
		{
			ps++;
		}
		if(tighten >= 2 && ps < bestPairScore) {
			ps++;
		}
		// Anchor mate must have score at least 'ps' minus the best possible
		// score for the opposite mate.
		TAlScore nc = ps - operfectScore;
		if(nc > minsc) {
			minsc = nc;
		}
		assert_leq(minsc, perfectScore);
	}

	DynProgFramer dpframe(!gReportOverhangs);
	swa.reset();
	oswa.reset();

	// Initialize a set of GroupWalks, one for each seed.  Also, intialize the
	// accompanying lists of reference seed hits (satups*)
	const size_t nsm = 5;
	const size_t nonz = sh.nonzeroOffsets(); // non-zero positions
	size_t eeHits = sh.numE2eHits();
	bool eeMode = eeHits > 0;
	bool firstEe = true;
	bool firstExtend = true;

	// Reset all the counters related to streaks
	prm.nEeFail = 0;
	prm.nUgFail = 0;
	prm.nDpFail = 0;

	size_t nelt = 0, neltLeft = 0;
	const size_t rows = rdlen;
	const size_t orows  = ordlen;
	size_t eltsDone = 0;
	while(true) {
		if(eeMode) {
			if(firstEe) {
				firstEe = false;
				eeMode = eeSaTups(
					rd,           // read
					sh,           // seed hits to extend into full alignments
					ebwtFw,       // BWT
					ref,          // Reference strings
					rnd,          // pseudo-random generator
					wlm,          // group walk left metrics
					swmSeed,      // seed-extend metrics
					nelt,         // out: # elements total
                    maxIters,     // max elts to report
					all);         // report all hits
				assert_eq(gws_.size(), rands_.size());
				assert_eq(gws_.size(), satpos_.size());
				neltLeft = nelt;
				// Initialize list that contains the mate-finding failure
				// streak for each range
				mateStreaks_.resize(gws_.size());
				mateStreaks_.fill(0);
			} else {
				eeMode = false;
			}
		}
		if(!eeMode) {
			if(nonz == 0) {
				// No seed hits!  Bail.
				return EXTEND_EXHAUSTED_CANDIDATES;
			}
			if(msink->Mmode() && minsc == perfectScore) {
				// Already found all perfect hits!
				return EXTEND_PERFECT_SCORE;
			}
			if(firstExtend) {
				nelt = 0;
				prioritizeSATups(
					rd,            // read
					sh,            // seed hits to extend into full alignments
					ebwtFw,        // BWT
					ebwtBw,        // BWT'
					ref,           // Reference strings
					seedmms,       // # seed mismatches allowed
					maxIters,      // max rows to consider per position
					doExtend,      // extend out seeds
					true,          // square extended length
					true,          // square SA range size
					nsm,           // smallness threshold
					ca,            // alignment cache for seed hits
					rnd,           // pseudo-random generator
					wlm,           // group walk left metrics
					prm,           // per-read metrics
					nelt,          // out: # elements total
					all);          // report all hits?
				assert_eq(gws_.size(), rands_.size());
				assert_eq(gws_.size(), satpos_.size());
				neltLeft = nelt;
				firstExtend = false;
				mateStreaks_.resize(gws_.size());
				mateStreaks_.fill(0);
			}
			if(neltLeft == 0) {
				// Finished examining gapped candidates
				break;
			}
		}
		for(size_t i = 0; i < gws_.size(); i++) {
			if(eeMode && eehits_[i].score < minsc) {
				return EXTEND_PERFECT_SCORE;
			}
			bool is_small       = satpos_[i].sat.size() < nsm;
			bool fw             = satpos_[i].pos.fw;
			uint32_t rdoff      = satpos_[i].pos.rdoff;
			uint32_t seedhitlen = satpos_[i].pos.seedlen;
			if(!fw) {
				// 'rdoff' and 'offidx' are with respect to the 5' end of
				// the read.  Here we convert rdoff to be with respect to
				// the upstream (3') end of ther read.
				rdoff = (uint32_t)(rdlen - rdoff - seedhitlen);
			}
			bool first = true;
			// If the range is small, investigate all elements now.  If the
			// range is large, just investigate one and move on - we might come
			// back to this range later.
			while(!rands_[i].done() && (first || is_small || eeMode)) {
				if(minsc == perfectScore) {
					if(!eeMode || eehits_[i].score < perfectScore) {
						return EXTEND_PERFECT_SCORE;
					}
				} else if(eeMode && eehits_[i].score < minsc) {
					break;
				}
				if(prm.nExDps >= maxDp || prm.nMateDps >= maxDp) {
					return EXTEND_EXCEEDED_HARD_LIMIT;
				}
				if(prm.nExUgs >= maxUg || prm.nMateUgs >= maxUg) {
					return EXTEND_EXCEEDED_HARD_LIMIT;
				}
				if(prm.nExIters >= maxIters) {
					return EXTEND_EXCEEDED_HARD_LIMIT;
				}
				if(eeMode && prm.nEeFail >= maxEeStreak) {
					return EXTEND_EXCEEDED_SOFT_LIMIT;
				}
				if(!eeMode && prm.nDpFail >= maxDpStreak) {
					return EXTEND_EXCEEDED_SOFT_LIMIT;
				}
				if(!eeMode && prm.nUgFail >= maxUgStreak) {
					return EXTEND_EXCEEDED_SOFT_LIMIT;
				}
				if(mateStreaks_[i] >= maxMateStreak) {
					// Don't try this seed range anymore
					rands_[i].setDone();
					assert(rands_[i].done());
					break;
				}
				prm.nExIters++;
				first = false;
				assert(!gws_[i].done());
				// Resolve next element offset
				WalkResult wr;
				size_t elt = rands_[i].next(rnd);
				SARangeWithOffs<TSlice> sa;
				sa.topf = satpos_[i].sat.topf;
				sa.len = satpos_[i].sat.key.len;
				sa.offs = satpos_[i].sat.offs;
				gws_[i].advanceElement((TIndexOffU)elt, ebwtFw, ref, sa, gwstate_, wr, wlm, prm);
				eltsDone++;
				assert_gt(neltLeft, 0);
				neltLeft--;
				assert_neq(OFF_MASK, wr.toff);
				TIndexOffU tidx = 0, toff = 0, tlen = 0;
				bool straddled = false;
				ebwtFw.joinedToTextOff(
					wr.elt.len,
					wr.toff,
					tidx,
					toff,
					tlen,
					eeMode,       // reject straddlers?
					straddled);   // straddled?
				if(tidx == OFF_MASK) {
					// The seed hit straddled a reference boundary so the seed hit
					// isn't valid
					continue;
				}
#ifndef NDEBUG
				if(!eeMode && !straddled) { // Check that seed hit matches reference
					uint64_t key = satpos_[i].sat.key.seq;
					for(size_t k = 0; k < wr.elt.len; k++) {
						int c = ref.getBase(tidx, toff + wr.elt.len - k - 1);
						assert_leq(c, 3);
						int ck = (int)(key & 3);
						key >>= 2;
						assert_eq(c, ck);
					}
				}
#endif
				// Find offset of alignment's upstream base assuming net gaps=0
				// between beginning of read and beginning of seed hit
				int64_t refoff = (int64_t)toff - rdoff;
				EIvalMergeListBinned& seenDiags  = anchor1 ? seenDiags1_ : seenDiags2_;
				// Coordinate of the seed hit w/r/t the pasted reference string
				Coord refcoord(tidx, refoff, fw);
				if(seenDiags.locusPresent(refcoord)) {
					// Already handled alignments seeded on this diagonal
					prm.nRedundants++;
					swmSeed.rshit++;
					continue;
				}
				// Now that we have a seed hit, there are many issues to solve
				// before we have a completely framed dynamic programming problem.
				// They include:
				//
				// 1. Setting reference offsets on either side of the seed hit,
				//    accounting for where the seed occurs in the read
				// 2. Adjusting the width of the banded dynamic programming problem
				//    and adjusting reference bounds to allow for gaps in the
				//    alignment
				// 3. Accounting for the edges of the reference, which can impact
				//    the width of the DP problem and reference bounds.
				// 4. Perhaps filtering the problem down to a smaller problem based
				//    on what DPs we've already solved for this read
				//
				// We do #1 here, since it is simple and we have all the seed-hit
				// information here.  #2 and #3 are handled in the DynProgFramer.
				int readGaps = 0, refGaps = 0;
				bool ungapped = false;
				if(!eeMode) {
					readGaps = sc.maxReadGaps(minsc, rdlen);
					refGaps  = sc.maxRefGaps(minsc, rdlen);
					ungapped = (readGaps == 0 && refGaps == 0);
				}
				int state = FOUND_NONE;
				bool found = false;
				// In unpaired mode, a seed extension is successful if it
				// results in a full alignment that meets the minimum score
				// threshold.  In paired-end mode, a seed extension is
				// successful if it results in a *full paired-end* alignment
				// that meets the minimum score threshold.
				if(eeMode) {
					resEe_.reset();
					resEe_.alres.reset();
					const EEHit& h = eehits_[i];
					assert_leq(h.score, perfectScore);
					resEe_.alres.setScore(AlnScore(h.score, h.ns(), 0));
					resEe_.alres.setShape(
						refcoord.ref(),  // ref id
						refcoord.off(),  // 0-based ref offset
						tlen,            // reference length
						fw,              // aligned to Watson?
						rdlen,           // read length
						true,            // pretrim soft?
						0,               // pretrim 5' end
						0,               // pretrim 3' end
						true,            // alignment trim soft?
						0,               // alignment trim 5' end
						0);              // alignment trim 3' end
					resEe_.alres.setRefNs(h.refns());
					if(h.mms() > 0) {
						assert_eq(1, h.mms());
						assert_lt(h.e1.pos, rd.length());
						resEe_.alres.ned().push_back(h.e1);
					}
					assert(resEe_.repOk(rd));
					state = FOUND_EE;
					found = true;
					Interval refival(refcoord, 1);
					seenDiags.add(refival);
					prm.nExEes++;
					prm.nEeFail++; // say it's failed until proven successful
					prm.nExEeFails++;
				} else if(doUngapped && ungapped) {
					resUngap_.reset();
					int al = swa.ungappedAlign(
						fw ? rd.patFw : rd.patRc,
						fw ? rd.qual  : rd.qualRev,
						refcoord,
						ref,
						tlen,
						sc,
						gReportOverhangs,
						minsc, // minimum
						resUngap_);
					Interval refival(refcoord, 1);
					seenDiags.add(refival);
					prm.nExUgs++;
					prm.nUgFail++; // say it's failed until proven successful
					prm.nExUgFails++;
					if(al == 0) {
						swmSeed.ungapfail++;
						continue;
					} else if(al == -1) {
						swmSeed.ungapnodec++;
					} else {
						found = true;
						state = FOUND_UNGAPPED;
						swmSeed.ungapsucc++;
					}
				}
				int64_t pastedRefoff = (int64_t)wr.toff - rdoff;
				DPRect rect;
				if(state == FOUND_NONE) {
					found = dpframe.frameSeedExtensionRect(
						refoff,   // ref offset implied by seed hit assuming no gaps
						rows,     // length of read sequence used in DP table
						tlen,     // length of reference
						readGaps, // max # of read gaps permitted in opp mate alignment
						refGaps,  // max # of ref gaps permitted in opp mate alignment
						(size_t)nceil, // # Ns permitted
						maxhalf,  // max width in either direction
						rect);    // DP rectangle
					assert(rect.repOk());
					// Add the seed diagonal at least
					seenDiags.add(Interval(refcoord, 1));
					if(!found) {
						continue;
					}
				}
				int64_t leftShift = refoff - rect.refl;
				size_t nwindow = 0;
				if((int64_t)toff >= rect.refl) {
					nwindow = (size_t)(toff - rect.refl);
				}
				// NOTE: We might be taking off more than we should because the
				// pasted string omits non-A/C/G/T characters, but we included them
				// when calculating leftShift.  We'll account for this later.
				pastedRefoff -= leftShift;
				size_t nsInLeftShift = 0;
				if(state == FOUND_NONE) {
					if(!swa.initedRead()) {
						// Initialize the aligner with a new read
						swa.initRead(
							rd.patFw,  // fw version of query
							rd.patRc,  // rc version of query
							rd.qual,   // fw version of qualities
							rd.qualRev,// rc version of qualities
							0,         // off of first char in 'rd' to consider
							rdlen,     // off of last char (excl) in 'rd' to consider
							sc);       // scoring scheme
					}
					swa.initRef(
						fw,        // whether to align forward or revcomp read
						tidx,      // reference aligned against
						rect,      // DP rectangle
						ref,       // Reference strings
						tlen,      // length of reference sequence
						sc,        // scoring scheme
						minsc,     // minimum score permitted
						enable8,   // use 8-bit SSE if possible?
						cminlen,   // minimum length for using checkpointing scheme
						cpow2,     // interval b/t checkpointed diags; 1 << this
						doTri,     // triangular mini-fills?
						true,      // this is a seed extension - not finding a mate
						nwindow,
						nsInLeftShift);
					// Because of how we framed the problem, we can say that we've
					// exhaustively scored the seed diagonal as well as maxgaps
					// diagonals on either side
					Interval refival(tidx, 0, fw, 0);
					rect.initIval(refival);
					seenDiags.add(refival);
					// Now fill the dynamic programming matrix and return true iff
					// there is at least one valid alignment
					TAlScore bestCell = std::numeric_limits<TAlScore>::min();
					found = swa.align(bestCell);
					swmSeed.tallyGappedDp(readGaps, refGaps);
					prm.nExDps++;
					prm.nDpFail++;    // failed until proven successful
					prm.nExDpFails++; // failed until proven successful
					if(!found) {
						TAlScore bestLast = anchor1 ? prm.bestLtMinscMate1 : prm.bestLtMinscMate2;
						if(bestCell > std::numeric_limits<TAlScore>::min() && bestCell > bestLast) {
							if(anchor1) {
								prm.bestLtMinscMate1 = bestCell;
							} else {
								prm.bestLtMinscMate2 = bestCell;
							}
						}
						continue; // Look for more anchor alignments
					}
				}
				bool firstInner = true;
				bool foundConcordant = false;
				while(true) {
					assert(found);
					SwResult *res = NULL;
					if(state == FOUND_EE) {
						if(!firstInner) {
							break;
						}
						res = &resEe_;
						assert(res->repOk(rd));
					} else if(state == FOUND_UNGAPPED) {
						if(!firstInner) {
							break;
						}
						res = &resUngap_;
						assert(res->repOk(rd));
					} else {
						resGap_.reset();
						assert(resGap_.empty());
						if(swa.done()) {
							break;
						}
						swa.nextAlignment(resGap_, minsc, rnd);
						found = !resGap_.empty();
						if(!found) {
							break;
						}
						res = &resGap_;
						assert(res->repOk(rd));
					}
					// TODO: If we're just taking anchor alignments out of the
					// same rectangle, aren't we getting very similar
					// rectangles for the opposite mate each time?  Seems like
					// we could save some work by detecting this.
					assert(res != NULL);
					firstInner = false;
					assert(res->alres.matchesRef(
						rd,
						ref,
						tmp_rf_,
						tmp_rdseq_,
						tmp_qseq_,
						raw_refbuf_,
						raw_destU32_,
						raw_matches_));
					Interval refival(tidx, 0, fw, tlen);
					assert_gt(res->alres.refExtent(), 0);
					if(gReportOverhangs &&
					   !refival.containsIgnoreOrient(res->alres.refival()))
					{
						res->alres.clipOutside(true, 0, tlen);
						if(res->alres.refExtent() == 0) {
							continue;
						}
					}
					assert(gReportOverhangs ||
					       refival.containsIgnoreOrient(res->alres.refival()));
					// Did the alignment fall entirely outside the reference?
					if(!refival.overlapsIgnoreOrient(res->alres.refival())) {
						continue;
					}
					// Is this alignment redundant with one we've seen previously?
					if(redAnchor_.overlap(res->alres)) {
						continue;
					}
					redAnchor_.add(res->alres);
					// Annotate the AlnRes object with some key parameters
					// that were used to obtain the alignment.
					res->alres.setParams(
						seedmms,   // # mismatches allowed in seed
						seedlen,   // length of seed
						seedival,  // interval between seeds
						minsc);    // minimum score for valid alignment
					bool foundMate = false;
					TRefOff off = res->alres.refoff();
					if( msink->state().doneWithMate(!anchor1) &&
					   !msink->state().doneWithMate( anchor1))
					{
						// We're done with the opposite mate but not with the
						// anchor mate; don't try to mate up the anchor.
						swMateImmediately = false;
					}
					if(found && swMateImmediately) {
						assert(!msink->state().doneWithMate(!anchor1));
						bool oleft = false, ofw = false;
						int64_t oll = 0, olr = 0, orl = 0, orr = 0;
						assert(!msink->state().done());
						foundMate = !oppFilt;
						TAlScore ominsc_cur = ominsc;
						//bool oungapped = false;
						int oreadGaps = 0, orefGaps = 0;
						//int oungappedAlign = -1; // defer
						if(foundMate) {
							// Adjust ominsc given the alignment score of the
							// anchor mate
							ominsc_cur = ominsc;
							if(tighten > 0 && msink->Mmode() && msink->hasSecondBestPair()) {
								// Paired-end alignments should have at least this score from now
								TAlScore ps;
								if(tighten == 1) {
									ps = msink->bestPair();
								} else if(tighten == 2) {
									ps = msink->secondBestPair();
								} else {
									TAlScore diff = msink->bestPair() - msink->secondBestPair();
									ps = msink->secondBestPair() + (diff * 3)/4;
								}
								if(tighten == 1 && ps < bestPairScore &&
								   msink->bestPair() == msink->secondBestPair())
								{
									ps++;
								}
								if(tighten >= 2 && ps < bestPairScore) {
									ps++;
								}
								// Anchor mate must have score at least 'ps' minus the best possible
								// score for the opposite mate.
								TAlScore nc = ps - res->alres.score().score();
								if(nc > ominsc_cur) {
									ominsc_cur = nc;
									assert_leq(ominsc_cur, operfectScore);
								}
							}
							oreadGaps = sc.maxReadGaps(ominsc_cur, ordlen);
							orefGaps  = sc.maxRefGaps (ominsc_cur, ordlen);
							//oungapped = (oreadGaps == 0 && orefGaps == 0);
							// TODO: Something lighter-weight than DP to scan
							// for other mate??
							//if(oungapped) {
							//	oresUngap_.reset();
							//	oungappedAlign = oswa.ungappedAlign(
							//		ofw ? ord.patFw : ord.patRc,
							//		ofw ? ord.qual  : ord.qualRev,
							//		orefcoord,
							//		ref,
							//		otlen,
							//		sc,
							//		gReportOverhangs,
							//		ominsc_cur,
							//		0,
							//		oresUngap_);
							//}
							foundMate = pepol.otherMate(
								anchor1,             // anchor mate is mate #1?
								fw,                  // anchor aligned to Watson?
								off,                 // offset of anchor mate
								orows + oreadGaps,   // max # columns spanned by alignment
								tlen,                // reference length
								anchor1 ? rd.length() : ord.length(), // mate 1 len
								anchor1 ? ord.length() : rd.length(), // mate 2 len
								oleft,               // out: look left for opposite mate?
								oll,
								olr,
								orl,
								orr,
								ofw);
						}
						DPRect orect;
						if(foundMate) {
							foundMate = dpframe.frameFindMateRect(
								!oleft,      // true iff anchor alignment is to the left
								oll,         // leftmost Watson off for LHS of opp aln
								olr,         // rightmost Watson off for LHS of opp aln
								orl,         // leftmost Watson off for RHS of opp aln
								orr,         // rightmost Watson off for RHS of opp aln
								orows,       // length of opposite mate
								tlen,        // length of reference sequence aligned to
								oreadGaps,   // max # of read gaps in opp mate aln
								orefGaps,    // max # of ref gaps in opp mate aln
								(size_t)onceil, // max # Ns on opp mate
								maxhalf,     // max width in either direction
								orect);      // DP rectangle
							assert(!foundMate || orect.refr >= orect.refl);
						}
						if(foundMate) {
							oresGap_.reset();
							assert(oresGap_.empty());
							if(!oswa.initedRead()) {
								oswa.initRead(
									ord.patFw,  // read to align
									ord.patRc,  // qualities
									ord.qual,   // read to align
									ord.qualRev,// qualities
									0,          // off of first char to consider
									ordlen,     // off of last char (ex) to consider
									sc);        // scoring scheme
							}
							// Given the boundaries defined by refi and reff, initilize
							// the SwAligner with the dynamic programming problem that
							// aligns the read to this reference stretch.
							size_t onsInLeftShift = 0;
							assert_geq(orect.refr, orect.refl);
							oswa.initRef(
								ofw,       // align forward or revcomp read?
								tidx,      // reference aligned against
								orect,     // DP rectangle
								ref,       // Reference strings
								tlen,      // length of reference sequence
								sc,        // scoring scheme
								ominsc_cur,// min score for valid alignments
								enable8,   // use 8-bit SSE if possible?
								cminlen,   // minimum length for using checkpointing scheme
								cpow2,     // interval b/t checkpointed diags; 1 << this
								doTri,     // triangular mini-fills?
								false,     // this is finding a mate - not seed ext
								0,         // nwindow?
								onsInLeftShift);
							// TODO: Can't we add some diagonals to the
							// opposite mate's seenDiags when we fill in the
							// opposite mate's DP?  Or can we?  We might want
							// to use this again as an anchor - will that still
							// happen?  Also, isn't there a problem with
							// consistency of the minimum score?  Minimum score
							// here depends in part on the score of the anchor
							// alignment here, but it won't when the current
							// opposite becomes the anchor.
							
							// Because of how we framed the problem, we can say
							// that we've exhaustively explored the "core"
							// diagonals
							//Interval orefival(tidx, 0, ofw, 0);
							//orect.initIval(orefival);
							//oseenDiags.add(orefival);

							// Now fill the dynamic programming matrix, return true
							// iff there is at least one valid alignment
							TAlScore bestCell = std::numeric_limits<TAlScore>::min();
							foundMate = oswa.align(bestCell);
							prm.nMateDps++;
							swmMate.tallyGappedDp(oreadGaps, orefGaps);
							if(!foundMate) {
								TAlScore bestLast = anchor1 ? prm.bestLtMinscMate2 : prm.bestLtMinscMate1;
								if(bestCell > std::numeric_limits<TAlScore>::min() && bestCell > bestLast) {
									if(anchor1) {
										prm.bestLtMinscMate2 = bestCell;
									} else {
										prm.bestLtMinscMate1 = bestCell;
									}
								}
							}
						}
						bool didAnchor = false;
						do {
							oresGap_.reset();
							assert(oresGap_.empty());
							if(foundMate && oswa.done()) {
								foundMate = false;
							} else if(foundMate) {
								oswa.nextAlignment(oresGap_, ominsc_cur, rnd);
								foundMate = !oresGap_.empty();
								assert(!foundMate || oresGap_.alres.matchesRef(
									ord,
									ref,
									tmp_rf_,
									tmp_rdseq_,
									tmp_qseq_,
									raw_refbuf_,
									raw_destU32_,
									raw_matches_));
							}
							if(foundMate) {
								// Redundant with one we've seen previously?
								if(!redAnchor_.overlap(oresGap_.alres)) {
									redAnchor_.add(oresGap_.alres);
								}
								assert_eq(ofw, oresGap_.alres.fw());
								// Annotate the AlnRes object with some key parameters
								// that were used to obtain the alignment.
								oresGap_.alres.setParams(
									seedmms,    // # mismatches allowed in seed
									seedlen,    // length of seed
									seedival,   // interval between seeds
									ominsc);    // minimum score for valid alignment
								assert_gt(oresGap_.alres.refExtent(), 0);
								if(gReportOverhangs &&
								   !refival.containsIgnoreOrient(oresGap_.alres.refival()))
								{
									oresGap_.alres.clipOutside(true, 0, tlen);
									foundMate = oresGap_.alres.refExtent() > 0;
								}
								if(foundMate && 
								   ((!gReportOverhangs &&
									 !refival.containsIgnoreOrient(oresGap_.alres.refival())) ||
									 !refival.overlapsIgnoreOrient(oresGap_.alres.refival())))
								{
									foundMate = false;
								}
							}
							ASSERT_ONLY(TRefId refid);
							TRefOff off1, off2;
							size_t len1, len2;
							bool fw1, fw2;
							int pairCl = PE_ALS_DISCORD;
							if(foundMate) {
								ASSERT_ONLY(refid =) res->alres.refid();
								assert_eq(refid, oresGap_.alres.refid());
								off1 = anchor1 ? off : oresGap_.alres.refoff();
								off2 = anchor1 ? oresGap_.alres.refoff() : off;
								len1 = anchor1 ?
									res->alres.refExtent() : oresGap_.alres.refExtent();
								len2 = anchor1 ?
									oresGap_.alres.refExtent() : res->alres.refExtent();
								fw1  = anchor1 ? res->alres.fw() : oresGap_.alres.fw();
								fw2  = anchor1 ? oresGap_.alres.fw() : res->alres.fw();
								// Check that final mate alignments are consistent with
								// paired-end fragment constraints
								pairCl = pepol.peClassifyPair(
									off1,
									len1,
									fw1,
									off2,
									len2,
									fw2);
								// Instead of trying
								//foundMate = pairCl != PE_ALS_DISCORD;
							}
							if(msink->state().doneConcordant()) {
								foundMate = false;
							}
							if(reportImmediately) {
								if(foundMate) {
									// Report pair to the AlnSinkWrap
									assert(!msink->state().doneConcordant());
									assert(msink != NULL);
									assert(res->repOk());
									assert(oresGap_.repOk());
									// Report an unpaired alignment
									assert(!msink->maxed());
									assert(!msink->state().done());
									bool doneUnpaired = false;
									//if(mixed || discord) {
										// Report alignment for mate #1 as an
										// unpaired alignment.
										if(!anchor1 || !didAnchor) {
											if(anchor1) {
												didAnchor = true;
											}
											const AlnRes& r1 = anchor1 ?
												res->alres : oresGap_.alres;
											if(!redMate1_.overlap(r1)) {
												redMate1_.add(r1);
												if(msink->report(0, &r1, NULL)) {
													doneUnpaired = true; // Short-circuited
												}
											}
										}
										// Report alignment for mate #2 as an
										// unpaired alignment.
										if(anchor1 || !didAnchor) {
											if(!anchor1) {
												didAnchor = true;
											}
											const AlnRes& r2 = anchor1 ?
												oresGap_.alres : res->alres;
											if(!redMate2_.overlap(r2)) {
												redMate2_.add(r2);
												if(msink->report(0, NULL, &r2)) {
													doneUnpaired = true; // Short-circuited
												}
											}
										}
									//} // if(mixed || discord)
									bool donePaired = false;
									if(pairCl != PE_ALS_DISCORD) {
										foundConcordant = true;
										if(msink->report(
										       0,
										       anchor1 ? &res->alres : &oresGap_.alres,
										       anchor1 ? &oresGap_.alres : &res->alres))
										{
											// Short-circuited because a limit, e.g.
											// -k, -m or -M, was exceeded
											donePaired = true;
										} else {
											if(tighten > 0 && msink->Mmode() && msink->hasSecondBestPair()) {
												// Paired-end alignments should have at least this score from now
												TAlScore ps;
												if(tighten == 1) {
													ps = msink->bestPair();
												} else if(tighten == 2) {
													ps = msink->secondBestPair();
												} else {
													TAlScore diff = msink->bestPair() - msink->secondBestPair();
													ps = msink->secondBestPair() + (diff * 3)/4;
												}
												if(tighten == 1 && ps < bestPairScore &&
												   msink->bestPair() == msink->secondBestPair())
												{
													ps++;
												}
												if(tighten >= 2 && ps < bestPairScore) {
													ps++;
												}
												// Anchor mate must have score at least 'ps' minus the best possible
												// score for the opposite mate.
												TAlScore nc = ps - operfectScore;
												if(nc > minsc) {
													minsc = nc;
													assert_leq(minsc, perfectScore);
													if(minsc > res->alres.score().score()) {
														// We're done with this anchor
														break;
													}
												}
												assert_leq(minsc, perfectScore);
											}
										}
									} // if(pairCl != PE_ALS_DISCORD)
									if(donePaired || doneUnpaired) {
										return EXTEND_POLICY_FULFILLED;
									}
									if(msink->state().doneWithMate(anchor1)) {
										// We're now done with the mate that we're
										// currently using as our anchor.  We're not
										// with the read overall.
										return EXTEND_POLICY_FULFILLED;
									}
								} else if((mixed || discord) && !didAnchor) {
									didAnchor = true;
									// Report unpaired hit for anchor
									assert(msink != NULL);
									assert(res->repOk());
									// Check that alignment accurately reflects the
									// reference characters aligned to
									assert(res->alres.matchesRef(
										rd,
										ref,
										tmp_rf_,
										tmp_rdseq_,
										tmp_qseq_,
										raw_refbuf_,
										raw_destU32_,
										raw_matches_));
									// Report an unpaired alignment
									assert(!msink->maxed());
									assert(!msink->state().done());
									// Report alignment for mate #1 as an
									// unpaired alignment.
									if(!msink->state().doneUnpaired(anchor1)) {
										const AlnRes& r = res->alres;
										RedundantAlns& red = anchor1 ? redMate1_ : redMate2_;
										const AlnRes* r1 = anchor1 ? &res->alres : NULL;
										const AlnRes* r2 = anchor1 ? NULL : &res->alres;
										if(!red.overlap(r)) {
											red.add(r);
											if(msink->report(0, r1, r2)) {
												return EXTEND_POLICY_FULFILLED; // Short-circuited
											}
										}
									}
									if(msink->state().doneWithMate(anchor1)) {
										// Done with mate, but not read overall
										return EXTEND_POLICY_FULFILLED;
									}
								}
							}
						} while(!oresGap_.empty());
					} // if(found && swMateImmediately)
					else if(found) {
						assert(!msink->state().doneWithMate(anchor1));
						// We found an anchor alignment but did not attempt to find
						// an alignment for the opposite mate (probably because
						// we're done with it)
						if(reportImmediately && (mixed || discord)) {
							// Report unpaired hit for anchor
							assert(msink != NULL);
							assert(res->repOk());
							// Check that alignment accurately reflects the
							// reference characters aligned to
							assert(res->alres.matchesRef(
								rd,
								ref,
								tmp_rf_,
								tmp_rdseq_,
								tmp_qseq_,
								raw_refbuf_,
								raw_destU32_,
								raw_matches_));
							// Report an unpaired alignment
							assert(!msink->maxed());
							assert(!msink->state().done());
							// Report alignment for mate #1 as an
							// unpaired alignment.
							if(!msink->state().doneUnpaired(anchor1)) {
								const AlnRes& r = res->alres;
								RedundantAlns& red = anchor1 ? redMate1_ : redMate2_;
								const AlnRes* r1 = anchor1 ? &res->alres : NULL;
								const AlnRes* r2 = anchor1 ? NULL : &res->alres;
								if(!red.overlap(r)) {
									red.add(r);
									if(msink->report(0, r1, r2)) {
										return EXTEND_POLICY_FULFILLED; // Short-circuited
									}
								}
							}
							if(msink->state().doneWithMate(anchor1)) {
								// Done with mate, but not read overall
								return EXTEND_POLICY_FULFILLED;
							}
						}
					}
				} // while(true)
				
				if(foundConcordant) {
					prm.nMateDpSuccs++;
					mateStreaks_[i] = 0;
					// Register this as a success.  Now we need to
					// make the streak variables reflect the
					// success.
					if(state == FOUND_UNGAPPED) {
						assert_gt(prm.nUgFail, 0);
						assert_gt(prm.nExUgFails, 0);
						prm.nExUgFails--;
						prm.nExUgSuccs++;
						prm.nUgLastSucc = prm.nExUgs-1;
						if(prm.nUgFail > prm.nUgFailStreak) {
							prm.nUgFailStreak = prm.nUgFail;
						}
						prm.nUgFail = 0;
					} else if(state == FOUND_EE) {
						assert_gt(prm.nEeFail, 0);
						assert_gt(prm.nExEeFails, 0);
						prm.nExEeFails--;
						prm.nExEeSuccs++;
						prm.nEeLastSucc = prm.nExEes-1;
						if(prm.nEeFail > prm.nEeFailStreak) {
							prm.nEeFailStreak = prm.nEeFail;
						}
						prm.nEeFail = 0;
					} else {
						assert_gt(prm.nDpFail, 0);
						assert_gt(prm.nExDpFails, 0);
						prm.nExDpFails--;
						prm.nExDpSuccs++;
						prm.nDpLastSucc = prm.nExDps-1;
						if(prm.nDpFail > prm.nDpFailStreak) {
							prm.nDpFailStreak = prm.nDpFail;
						}
						prm.nDpFail = 0;
					}
				} else {
					prm.nMateDpFails++;
					mateStreaks_[i]++;
				}
				// At this point we know that we aren't bailing, and will continue to resolve seed hits.  

			} // while(!gw.done())
		} // for(size_t i = 0; i < gws_.size(); i++)
	}
	return EXTEND_EXHAUSTED_CANDIDATES;
}