File: aligner_swsse.h

package info (click to toggle)
bowtie2 2.2.4-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 20,280 kB
  • ctags: 5,481
  • sloc: cpp: 58,605; perl: 1,190; sh: 1,036; makefile: 370; ansic: 122; python: 95
file content (500 lines) | stat: -rw-r--r-- 15,152 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
/*
 * Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
 *
 * This file is part of Bowtie 2.
 *
 * Bowtie 2 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Bowtie 2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef ALIGNER_SWSSE_H_
#define ALIGNER_SWSSE_H_

#include "ds.h"
#include "mem_ids.h"
#include "random_source.h"
#include "scoring.h"
#include "mask.h"
#include "sse_util.h"
#include <strings.h>


struct SSEMetrics {
	
	SSEMetrics():mutex_m() { reset(); }

	void clear() { reset(); }
	void reset() {
		dp = dpsat = dpfail = dpsucc = 
		col = cell = inner = fixup =
		gathsol = bt = btfail = btsucc = btcell =
		corerej = nrej = 0;
	}

	void merge(const SSEMetrics& o, bool getLock = false) {
        ThreadSafe ts(&mutex_m, getLock);
		dp       += o.dp;
		dpsat    += o.dpsat;
		dpfail   += o.dpfail;
		dpsucc   += o.dpsucc;
		col      += o.col;
		cell     += o.cell;
		inner    += o.inner;
		fixup    += o.fixup;
		gathsol  += o.gathsol;
		bt       += o.bt;
		btfail   += o.btfail;
		btsucc   += o.btsucc;
		btcell   += o.btcell;
		corerej  += o.corerej;
		nrej     += o.nrej;
	}

	uint64_t dp;       // DPs tried
	uint64_t dpsat;    // DPs saturated
	uint64_t dpfail;   // DPs failed
	uint64_t dpsucc;   // DPs succeeded
	uint64_t col;      // DP columns
	uint64_t cell;     // DP cells
	uint64_t inner;    // DP inner loop iters
	uint64_t fixup;    // DP fixup loop iters
	uint64_t gathsol;  // DP gather solution cells found
	uint64_t bt;       // DP backtraces
	uint64_t btfail;   // DP backtraces failed
	uint64_t btsucc;   // DP backtraces succeeded
	uint64_t btcell;   // DP backtrace cells traversed
	uint64_t corerej;  // DP backtrace core rejections
	uint64_t nrej;     // DP backtrace N rejections
	MUTEX_T  mutex_m;
};

/**
 * Encapsulates matrix information calculated by the SSE aligner.
 *
 * Matrix memory is laid out as follows:
 *
 * - Elements (individual cell scores) are packed into __m128i vectors
 * - Vectors are packed into quartets, quartet elements correspond to: a vector
 *   from E, one from F, one from H, and one that's "reserved"
 * - Quartets are packed into columns, where the number of quartets is
 *   determined by the number of query characters divided by the number of
 *   elements per vector
 *
 * Regarding the "reserved" element of the vector quartet: we use it for two
 * things.  First, we use the first column of reserved vectors to stage the
 * initial column of H vectors.  Second, we use the "reserved" vectors during
 * the backtrace procedure to store information about (a) which cells have been
 * traversed, (b) whether the cell is "terminal" (in local mode), etc.
 */
struct SSEMatrix {

	// Each matrix element is a quartet of vectors.  These constants are used
	// to identify members of the quartet.
	const static size_t E   = 0;
	const static size_t F   = 1;
	const static size_t H   = 2;
	const static size_t TMP = 3;

	SSEMatrix(int cat = 0) : nvecPerCell_(4), matbuf_(cat) { }

	/**
	 * Return a pointer to the matrix buffer.
	 */
	inline __m128i *ptr() {
		assert(inited_);
		return matbuf_.ptr();
	}
	
	/**
	 * Return a pointer to the E vector at the given row and column.  Note:
	 * here row refers to rows of vectors, not rows of elements.
	 */
	inline __m128i* evec(size_t row, size_t col) {
		assert_lt(row, nvecrow_);
		assert_lt(col, nveccol_);
		size_t elt = row * rowstride() + col * colstride() + E;
		assert_lt(elt, matbuf_.size());
		return ptr() + elt;
	}

	/**
	 * Like evec, but it's allowed to ask for a pointer to one column after the
	 * final one.
	 */
	inline __m128i* evecUnsafe(size_t row, size_t col) {
		assert_lt(row, nvecrow_);
		assert_leq(col, nveccol_);
		size_t elt = row * rowstride() + col * colstride() + E;
		assert_lt(elt, matbuf_.size());
		return ptr() + elt;
	}

	/**
	 * Return a pointer to the F vector at the given row and column.  Note:
	 * here row refers to rows of vectors, not rows of elements.
	 */
	inline __m128i* fvec(size_t row, size_t col) {
		assert_lt(row, nvecrow_);
		assert_lt(col, nveccol_);
		size_t elt = row * rowstride() + col * colstride() + F;
		assert_lt(elt, matbuf_.size());
		return ptr() + elt;
	}

	/**
	 * Return a pointer to the H vector at the given row and column.  Note:
	 * here row refers to rows of vectors, not rows of elements.
	 */
	inline __m128i* hvec(size_t row, size_t col) {
		assert_lt(row, nvecrow_);
		assert_lt(col, nveccol_);
		size_t elt = row * rowstride() + col * colstride() + H;
		assert_lt(elt, matbuf_.size());
		return ptr() + elt;
	}

	/**
	 * Return a pointer to the TMP vector at the given row and column.  Note:
	 * here row refers to rows of vectors, not rows of elements.
	 */
	inline __m128i* tmpvec(size_t row, size_t col) {
		assert_lt(row, nvecrow_);
		assert_lt(col, nveccol_);
		size_t elt = row * rowstride() + col * colstride() + TMP;
		assert_lt(elt, matbuf_.size());
		return ptr() + elt;
	}

	/**
	 * Like tmpvec, but it's allowed to ask for a pointer to one column after
	 * the final one.
	 */
	inline __m128i* tmpvecUnsafe(size_t row, size_t col) {
		assert_lt(row, nvecrow_);
		assert_leq(col, nveccol_);
		size_t elt = row * rowstride() + col * colstride() + TMP;
		assert_lt(elt, matbuf_.size());
		return ptr() + elt;
	}
	
	/**
	 * Given a number of rows (nrow), a number of columns (ncol), and the
	 * number of words to fit inside a single __m128i vector, initialize the
	 * matrix buffer to accomodate the needed configuration of vectors.
	 */
	void init(
		size_t nrow,
		size_t ncol,
		size_t wperv);
	
	/**
	 * Return the number of __m128i's you need to skip over to get from one
	 * cell to the cell one column over from it.
	 */
	inline size_t colstride() const { return colstride_; }

	/**
	 * Return the number of __m128i's you need to skip over to get from one
	 * cell to the cell one row down from it.
	 */
	inline size_t rowstride() const { return rowstride_; }

	/**
	 * Given a row, col and matrix (i.e. E, F or H), return the corresponding
	 * element.
	 */
	int eltSlow(size_t row, size_t col, size_t mat) const;
	
	/**
	 * Given a row, col and matrix (i.e. E, F or H), return the corresponding
	 * element.
	 */
	inline int elt(size_t row, size_t col, size_t mat) const {
		assert(inited_);
		assert_lt(row, nrow_);
		assert_lt(col, ncol_);
		assert_lt(mat, 3);
		// Move to beginning of column/row
		size_t rowelt = row / nvecrow_;
		size_t rowvec = row % nvecrow_;
		size_t eltvec = (col * colstride_) + (rowvec * rowstride_) + mat;
		assert_lt(eltvec, matbuf_.size());
		if(wperv_ == 16) {
			return (int)((uint8_t*)(matbuf_.ptr() + eltvec))[rowelt];
		} else {
			assert_eq(8, wperv_);
			return (int)((int16_t*)(matbuf_.ptr() + eltvec))[rowelt];
		}
	}

	/**
	 * Return the element in the E matrix at element row, col.
	 */
	inline int eelt(size_t row, size_t col) const {
		return elt(row, col, E);
	}

	/**
	 * Return the element in the F matrix at element row, col.
	 */
	inline int felt(size_t row, size_t col) const {
		return elt(row, col, F);
	}

	/**
	 * Return the element in the H matrix at element row, col.
	 */
	inline int helt(size_t row, size_t col) const {
		return elt(row, col, H);
	}
	
	/**
	 * Return true iff the given cell has its reportedThru bit set.
	 */
	inline bool reportedThrough(
		size_t row,          // current row
		size_t col) const    // current column
	{
		return (masks_[row][col] & (1 << 0)) != 0;
	}

	/**
	 * Set the given cell's reportedThru bit.
	 */
	inline void setReportedThrough(
		size_t row,          // current row
		size_t col)          // current column
	{
		masks_[row][col] |= (1 << 0);
	}

	/**
	 * Return true iff the H mask has been set with a previous call to hMaskSet.
	 */
	bool isHMaskSet(
		size_t row,          // current row
		size_t col) const;   // current column

	/**
	 * Set the given cell's H mask.  This is the mask of remaining legal ways to
	 * backtrack from the H cell at this coordinate.  It's 5 bits long and has
	 * offset=2 into the 16-bit field.
	 */
	void hMaskSet(
		size_t row,          // current row
		size_t col,          // current column
		int mask);

	/**
	 * Return true iff the E mask has been set with a previous call to eMaskSet.
	 */
	bool isEMaskSet(
		size_t row,          // current row
		size_t col) const;   // current column

	/**
	 * Set the given cell's E mask.  This is the mask of remaining legal ways to
	 * backtrack from the E cell at this coordinate.  It's 2 bits long and has
	 * offset=8 into the 16-bit field.
	 */
	void eMaskSet(
		size_t row,          // current row
		size_t col,          // current column
		int mask);
	
	/**
	 * Return true iff the F mask has been set with a previous call to fMaskSet.
	 */
	bool isFMaskSet(
		size_t row,          // current row
		size_t col) const;   // current column

	/**
	 * Set the given cell's F mask.  This is the mask of remaining legal ways to
	 * backtrack from the F cell at this coordinate.  It's 2 bits long and has
	 * offset=11 into the 16-bit field.
	 */
	void fMaskSet(
		size_t row,          // current row
		size_t col,          // current column
		int mask);

	/**
	 * Analyze a cell in the SSE-filled dynamic programming matrix.  Determine &
	 * memorize ways that we can backtrack from the cell.  If there is at least one
	 * way to backtrack, select one at random and return the selection.
	 *
	 * There are a few subtleties to keep in mind regarding which cells can be at
	 * the end of a backtrace.  First of all: cells from which we can backtrack
	 * should not be at the end of a backtrace.  But have to distinguish between
	 * cells whose masks eventually become 0 (we shouldn't end at those), from
	 * those whose masks were 0 all along (we can end at those).
	 */
	void analyzeCell(
		size_t row,          // current row
		size_t col,          // current column
		size_t ct,           // current cell type: E/F/H
		int refc,
		int readc,
		int readq,
		const Scoring& sc,   // scoring scheme
		int64_t offsetsc,    // offset to add to each score
		RandomSource& rand,  // rand gen for choosing among equal options
		bool& empty,         // out: =true iff no way to backtrace
		int& cur,            // out: =type of transition
		bool& branch,        // out: =true iff we chose among >1 options
		bool& canMoveThru,   // out: =true iff ...
		bool& reportedThru); // out: =true iff ...

	/**
	 * Initialize the matrix of masks and backtracking flags.
	 */
	void initMasks();

	/**
	 * Return the number of rows in the dynamic programming matrix.
	 */
	size_t nrow() const {
		return nrow_;
	}

	/**
	 * Return the number of columns in the dynamic programming matrix.
	 */
	size_t ncol() const {
		return ncol_;
	}
	
	/**
	 * Prepare a row so we can use it to store masks.
	 */
	void resetRow(size_t i) {
		assert(!reset_[i]);
		masks_[i].resizeNoCopy(ncol_);
		masks_[i].fillZero();
		reset_[i] = true;
	}

	bool             inited_;      // initialized?
	size_t           nrow_;        // # rows
	size_t           ncol_;        // # columns
	size_t           nvecrow_;     // # vector rows (<= nrow_)
	size_t           nveccol_;     // # vector columns (<= ncol_)
	size_t           wperv_;       // # words per vector
	size_t           vecshift_;    // # bits to shift to divide by words per vec
	size_t           nvecPerCol_;  // # vectors per column
	size_t           nvecPerCell_; // # vectors per matrix cell (4)
	size_t           colstride_;   // # vectors b/t adjacent cells in same row
	size_t           rowstride_;   // # vectors b/t adjacent cells in same col
	EList_m128i      matbuf_;      // buffer for holding vectors
	ELList<uint16_t> masks_;       // buffer for masks/backtracking flags
	EList<bool>      reset_;       // true iff row in masks_ has been reset
};

/**
 * All the data associated with the query profile and other data needed for SSE
 * alignment of a query.
 */
struct SSEData {
	SSEData(int cat = 0) : profbuf_(cat), mat_(cat) { }
	EList_m128i    profbuf_;     // buffer for query profile & temp vecs
	EList_m128i    vecbuf_;      // buffer for 2 column vectors (not using mat_)
	size_t         qprofStride_; // stride for query profile
	size_t         gbarStride_;  // gap barrier for query profile
	SSEMatrix      mat_;         // SSE matrix for holding all E, F, H vectors
	size_t         maxPen_;      // biggest penalty of all
	size_t         maxBonus_;    // biggest bonus of all
	size_t         lastIter_;    // which 128-bit striped word has final row?
	size_t         lastWord_;    // which word within 128-word has final row?
	int            bias_;        // all scores shifted up by this for unsigned
};

/**
 * Return true iff the H mask has been set with a previous call to hMaskSet.
 */
inline bool SSEMatrix::isHMaskSet(
	size_t row,          // current row
	size_t col) const    // current column
{
	return (masks_[row][col] & (1 << 1)) != 0;
}

/**
 * Set the given cell's H mask.  This is the mask of remaining legal ways to
 * backtrack from the H cell at this coordinate.  It's 5 bits long and has
 * offset=2 into the 16-bit field.
 */
inline void SSEMatrix::hMaskSet(
	size_t row,          // current row
	size_t col,          // current column
	int mask)
{
	assert_lt(mask, 32);
	masks_[row][col] &= ~(31 << 1);
	masks_[row][col] |= (1 << 1 | mask << 2);
}

/**
 * Return true iff the E mask has been set with a previous call to eMaskSet.
 */
inline bool SSEMatrix::isEMaskSet(
	size_t row,          // current row
	size_t col) const    // current column
{
	return (masks_[row][col] & (1 << 7)) != 0;
}

/**
 * Set the given cell's E mask.  This is the mask of remaining legal ways to
 * backtrack from the E cell at this coordinate.  It's 2 bits long and has
 * offset=8 into the 16-bit field.
 */
inline void SSEMatrix::eMaskSet(
	size_t row,          // current row
	size_t col,          // current column
	int mask)
{
	assert_lt(mask, 4);
	masks_[row][col] &= ~(7 << 7);
	masks_[row][col] |=  (1 << 7 | mask << 8);
}

/**
 * Return true iff the F mask has been set with a previous call to fMaskSet.
 */
inline bool SSEMatrix::isFMaskSet(
	size_t row,          // current row
	size_t col) const    // current column
{
	return (masks_[row][col] & (1 << 10)) != 0;
}

/**
 * Set the given cell's F mask.  This is the mask of remaining legal ways to
 * backtrack from the F cell at this coordinate.  It's 2 bits long and has
 * offset=11 into the 16-bit field.
 */
inline void SSEMatrix::fMaskSet(
	size_t row,          // current row
	size_t col,          // current column
	int mask)
{
	assert_lt(mask, 4);
	masks_[row][col] &= ~(7 << 10);
	masks_[row][col] |=  (1 << 10 | mask << 11);
}

#define ROWSTRIDE_2COL 4
#define ROWSTRIDE 4

#endif /*ndef ALIGNER_SWSSE_H_*/