File: aln_sink.h

package info (click to toggle)
bowtie2 2.2.4-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 20,280 kB
  • ctags: 5,481
  • sloc: cpp: 58,605; perl: 1,190; sh: 1,036; makefile: 370; ansic: 122; python: 95
file content (1371 lines) | stat: -rw-r--r-- 45,835 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
/*
 * Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
 *
 * This file is part of Bowtie 2.
 *
 * Bowtie 2 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Bowtie 2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef ALN_SINK_H_
#define ALN_SINK_H_

#include <limits>
#include "read.h"
#include "unique.h"
#include "sam.h"
#include "ds.h"
#include "simple_func.h"
#include "outq.h"
#include <utility>

// Forward decl	
class SeedResults;

enum {
	OUTPUT_SAM = 1
};

/**
 * Metrics summarizing the work done by the reporter and summarizing
 * the number of reads that align, that fail to align, and that align
 * non-uniquely.
 */
struct ReportingMetrics {

	ReportingMetrics():mutex_m() {
	    reset();
	}

	void reset() {
		init(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
	}

	void init(
		uint64_t nread_,
		uint64_t npaired_,
		uint64_t nunpaired_,
		uint64_t nconcord_uni_,
		uint64_t nconcord_uni1_,
		uint64_t nconcord_uni2_,
		uint64_t nconcord_rep_,
		uint64_t nconcord_0_,
		uint64_t ndiscord_,
		uint64_t nunp_0_uni_,
		uint64_t nunp_0_uni1_,
		uint64_t nunp_0_uni2_,
		uint64_t nunp_0_rep_,
		uint64_t nunp_0_0_,
		uint64_t nunp_rep_uni_,
		uint64_t nunp_rep_uni1_,
		uint64_t nunp_rep_uni2_,
		uint64_t nunp_rep_rep_,
		uint64_t nunp_rep_0_,
		uint64_t nunp_uni_,
		uint64_t nunp_uni1_,
		uint64_t nunp_uni2_,
		uint64_t nunp_rep_,
		uint64_t nunp_0_,
		uint64_t sum_best1_,
		uint64_t sum_best2_,
		uint64_t sum_best_)
	{
		nread         = nread_;
		
		npaired       = npaired_;
		nunpaired     = nunpaired_;
		
		nconcord_uni  = nconcord_uni_;
		nconcord_uni1 = nconcord_uni1_;
		nconcord_uni2 = nconcord_uni2_;
		nconcord_rep  = nconcord_rep_;
		nconcord_0    = nconcord_0_;
		
		ndiscord      = ndiscord_;
		
		nunp_0_uni    = nunp_0_uni_;
		nunp_0_uni1   = nunp_0_uni1_;
		nunp_0_uni2   = nunp_0_uni2_;
		nunp_0_rep    = nunp_0_rep_;
		nunp_0_0      = nunp_0_0_;

		nunp_rep_uni  = nunp_rep_uni_;
		nunp_rep_uni1 = nunp_rep_uni1_;
		nunp_rep_uni2 = nunp_rep_uni2_;
		nunp_rep_rep  = nunp_rep_rep_;
		nunp_rep_0    = nunp_rep_0_;

		nunp_uni      = nunp_uni_;
		nunp_uni1     = nunp_uni1_;
		nunp_uni2     = nunp_uni2_;
		nunp_rep      = nunp_rep_;
		nunp_0        = nunp_0_;

		sum_best1     = sum_best1_;
		sum_best2     = sum_best2_;
		sum_best      = sum_best_;
	}
	
	/**
	 * Merge (add) the counters in the given ReportingMetrics object
	 * into this object.  This is the only safe way to update a
	 * ReportingMetrics shared by multiple threads.
	 */
	void merge(const ReportingMetrics& met, bool getLock = false) {
        ThreadSafe ts(&mutex_m, getLock);
		nread         += met.nread;

		npaired       += met.npaired;
		nunpaired     += met.nunpaired;

		nconcord_uni  += met.nconcord_uni;
		nconcord_uni1 += met.nconcord_uni1;
		nconcord_uni2 += met.nconcord_uni2;
		nconcord_rep  += met.nconcord_rep;
		nconcord_0    += met.nconcord_0;

		ndiscord      += met.ndiscord;

		nunp_0_uni    += met.nunp_0_uni;
		nunp_0_uni1   += met.nunp_0_uni1;
		nunp_0_uni2   += met.nunp_0_uni2;
		nunp_0_rep    += met.nunp_0_rep;
		nunp_0_0      += met.nunp_0_0;

		nunp_rep_uni  += met.nunp_rep_uni;
		nunp_rep_uni1 += met.nunp_rep_uni1;
		nunp_rep_uni2 += met.nunp_rep_uni2;
		nunp_rep_rep  += met.nunp_rep_rep;
		nunp_rep_0    += met.nunp_rep_0;

		nunp_uni      += met.nunp_uni;
		nunp_uni1     += met.nunp_uni1;
		nunp_uni2     += met.nunp_uni2;
		nunp_rep      += met.nunp_rep;
		nunp_0        += met.nunp_0;

		sum_best1     += met.sum_best1;
		sum_best2     += met.sum_best2;
		sum_best      += met.sum_best;
	}

	uint64_t  nread;         // # reads
	uint64_t  npaired;       // # pairs
	uint64_t  nunpaired;     // # unpaired reads
	
	// Paired
	
	//  Concordant
	uint64_t  nconcord_uni;  // # pairs with unique concordant alns
	uint64_t  nconcord_uni1; // # pairs with exactly 1 concordant alns
	uint64_t  nconcord_uni2; // # pairs with >1 concordant aln, still unique
	uint64_t  nconcord_rep;  // # pairs with repetitive concordant alns
	uint64_t  nconcord_0;    // # pairs with 0 concordant alns
	//  Discordant
	uint64_t  ndiscord;      // # pairs with 1 discordant aln
	
	//  Unpaired from failed pairs
	uint64_t  nunp_0_uni;    // # unique from nconcord_0_ - ndiscord_
	uint64_t  nunp_0_uni1;   // # pairs with exactly 1 concordant alns
	uint64_t  nunp_0_uni2;   // # pairs with >1 concordant aln, still unique
	uint64_t  nunp_0_rep;    // # repetitive from 
	uint64_t  nunp_0_0;      // # with 0 alignments

	//  Unpaired from repetitive pairs
	uint64_t  nunp_rep_uni;  // # pairs with unique concordant alns
	uint64_t  nunp_rep_uni1; // # pairs with exactly 1 concordant alns
	uint64_t  nunp_rep_uni2; // # pairs with >1 concordant aln, still unique
	uint64_t  nunp_rep_rep;  // # pairs with repetitive concordant alns
	uint64_t  nunp_rep_0;    // # pairs with 0 concordant alns
	
	// Unpaired
	
	uint64_t  nunp_uni;      // # unique from nconcord_0_ - ndiscord_
	uint64_t  nunp_uni1;     // # pairs with exactly 1 concordant alns
	uint64_t  nunp_uni2;     // # pairs with >1 concordant aln, still unique
	uint64_t  nunp_rep;      // # repetitive from 
	uint64_t  nunp_0;        // # with 0 alignments

	
	uint64_t  sum_best1;     // Sum of all the best alignment scores
	uint64_t  sum_best2;     // Sum of all the second-best alignment scores
	uint64_t  sum_best;      // Sum of all the best and second-best

	MUTEX_T mutex_m;
};

// Type for expression numbers of hits
typedef int64_t THitInt;

/**
 * Parameters affecting reporting of alignments, specifically -k & -a,
 * -m & -M.
 */
struct ReportingParams {

	explicit ReportingParams(
		THitInt khits_,
		THitInt mhits_,
		THitInt pengap_,
		bool msample_,
		bool discord_,
		bool mixed_)
	{
		init(khits_, mhits_, pengap_, msample_, discord_, mixed_);
	}

	void init(
		THitInt khits_,
		THitInt mhits_,
		THitInt pengap_,
		bool msample_,
		bool discord_,
		bool mixed_)
	{
		khits   = khits_;     // -k (or high if -a)
		mhits   = ((mhits_ == 0) ? std::numeric_limits<THitInt>::max() : mhits_);
		pengap  = pengap_;
		msample = msample_;
		discord = discord_;
		mixed   = mixed_;
	}
	
#ifndef NDEBUG
	/**
	 * Check that reporting parameters are internally consistent.
	 */
	bool repOk() const {
		assert_geq(khits, 1);
		assert_geq(mhits, 1);
		return true;
	}
#endif
	
	/**
	 * Return true iff a -m or -M limit was set by the user.
	 */
	inline bool mhitsSet() const {
		return mhits < std::numeric_limits<THitInt>::max();
	}
	
	/**
	 * Return a multiplier that indicates how many alignments we might look for
	 * (max).  We can use this to boost parameters like ROWM and POSF
	 * appropriately.
	 */
	inline THitInt mult() const {
		if(mhitsSet()) {
			return mhits+1;
		}
		return khits;
	}

	/**
	 * Given ROWM, POSF thresholds, boost them according to mult().
	 */
	void boostThreshold(SimpleFunc& func) {
		THitInt mul = mult();
		assert_gt(mul, 0);
		if(mul == std::numeric_limits<THitInt>::max()) {
			func.setMin(std::numeric_limits<double>::max());
		} else if(mul > 1) {
			func.mult(mul);
		}
	}
	
	/**
	 * Return true iff we are reporting all hits.
	 */
	bool allHits() const {
		return khits == std::numeric_limits<THitInt>::max();
	}

	// Number of alignments to report
	THitInt khits;
	
	// Read is non-unique if mhits-1 next-best alignments are within
	// pengap of the best alignment
	THitInt mhits, pengap;
	
	// true if -M is specified, meaning that if the -M ceiling is
	// exceeded, we should report 'khits' alignments chosen at random
	// from those found
	bool msample;
	
	// true iff we should seek and report discordant paired-end alignments for
	// paired-end reads.
	bool discord;

	// true iff we should seek and report unpaired mate alignments when there
	// are paired-end alignments for a paired-end read, or if the number of
	// paired-end alignments exceeds the -m ceiling.
	bool mixed;
};

/**
 * A state machine keeping track of the number and type of alignments found so
 * far.  Its purpose is to inform the caller as to what stage the alignment is
 * in and what categories of alignment are still of interest.  This information
 * should allow the caller to short-circuit some alignment work.  Another
 * purpose is to tell the AlnSinkWrap how many and what type of alignment to
 * report.
 *
 * TODO: This class does not keep accurate information about what
 * short-circuiting took place.  If a read is identical to a previous read,
 * there should be a way to query this object to determine what work, if any,
 * has to be re-done for the new read.
 */
class ReportingState {

public:

	enum {
		NO_READ = 1,        // haven't got a read yet
		CONCORDANT_PAIRS,   // looking for concordant pairs
		DISCORDANT_PAIRS,   // looking for discordant pairs
		UNPAIRED,           // looking for unpaired
		DONE                // finished looking
	};

	// Flags for different ways we can finish out a category of potential
	// alignments.
	
	enum {
		EXIT_DID_NOT_EXIT = 1,        // haven't finished
		EXIT_DID_NOT_ENTER,           // never tried search	
		EXIT_SHORT_CIRCUIT_k,         // -k exceeded
		EXIT_SHORT_CIRCUIT_M,         // -M exceeded
		EXIT_SHORT_CIRCUIT_TRUMPED,   // made irrelevant
		EXIT_CONVERTED_TO_DISCORDANT, // unpair became discord
		EXIT_NO_ALIGNMENTS,           // none found
		EXIT_WITH_ALIGNMENTS          // some found
	};
	
	ReportingState(const ReportingParams& p) : p_(p) { reset(); }
	
	/**
	 * Set all state to uninitialized defaults.
	 */
	void reset() {
		state_ = ReportingState::NO_READ;
		paired_ = false;
		nconcord_ = 0;
		ndiscord_ = 0;
		nunpair1_ = 0;
		nunpair2_ = 0;
		doneConcord_ = false;
		doneDiscord_ = false;
		doneUnpair_  = false;
		doneUnpair1_ = false;
		doneUnpair2_ = false;
		exitConcord_ = ReportingState::EXIT_DID_NOT_ENTER;
		exitDiscord_ = ReportingState::EXIT_DID_NOT_ENTER;
		exitUnpair1_ = ReportingState::EXIT_DID_NOT_ENTER;
		exitUnpair2_ = ReportingState::EXIT_DID_NOT_ENTER;
		done_ = false;
	}
	
	/**
	 * Return true iff this ReportingState has been initialized with a call to
	 * nextRead() since the last time reset() was called.
	 */
	bool inited() const { return state_ != ReportingState::NO_READ; }

	/**
	 * Initialize state machine with a new read.  The state we start in depends
	 * on whether it's paired-end or unpaired.
	 */
	void nextRead(bool paired);

	/**
	 * Caller uses this member function to indicate that one additional
	 * concordant alignment has been found.
	 */
	bool foundConcordant();

	/**
	 * Caller uses this member function to indicate that one additional
	 * discordant alignment has been found.
	 */
	bool foundUnpaired(bool mate1);
	
	/**
	 * Called to indicate that the aligner has finished searching for
	 * alignments.  This gives us a chance to finalize our state.
	 *
	 * TODO: Keep track of short-circuiting information.
	 */
	void finish();
	
	/**
	 * Populate given counters with the number of various kinds of alignments
	 * to report for this read.  Concordant alignments are preferable to (and
	 * mutually exclusive with) discordant alignments, and paired-end
	 * alignments are preferable to unpaired alignments.
	 *
	 * The caller also needs some additional information for the case where a
	 * pair or unpaired read aligns repetitively.  If the read is paired-end
	 * and the paired-end has repetitive concordant alignments, that should be
	 * reported, and 'pairMax' is set to true to indicate this.  If the read is
	 * paired-end, does not have any conordant alignments, but does have
	 * repetitive alignments for one or both mates, then that should be
	 * reported, and 'unpair1Max' and 'unpair2Max' are set accordingly.
	 *
	 * Note that it's possible in the case of a paired-end read for the read to
	 * have repetitive concordant alignments, but for one mate to have a unique
	 * unpaired alignment.
	 */
	void getReport(
		uint64_t& nconcordAln, // # concordant alignments to report
		uint64_t& ndiscordAln, // # discordant alignments to report
		uint64_t& nunpair1Aln, // # unpaired alignments for mate #1 to report
		uint64_t& nunpair2Aln, // # unpaired alignments for mate #2 to report
		bool& pairMax,         // repetitive concordant alignments
		bool& unpair1Max,      // repetitive alignments for mate #1
		bool& unpair2Max)      // repetitive alignments for mate #2
		const;

	/**
	 * Return an integer representing the alignment state we're in.
	 */
	inline int state() const { return state_; }
	
	/**
	 * If false, there's no need to solve any more dynamic programming problems
	 * for finding opposite mates.
	 */
	inline bool doneConcordant() const { return doneConcord_; }
	
	/**
	 * If false, there's no need to seek any more discordant alignment.
	 */
	inline bool doneDiscordant() const { return doneDiscord_; }
	
	/**
	 * If false, there's no need to seek any more unpaired alignments for the
	 * specified mate.  Note: this doesn't necessarily mean we can stop looking
	 * for alignments for the mate, since this might be necessary for finding
	 * concordant and discordant alignments.
	 */
	inline bool doneUnpaired(bool mate1) const {
		return mate1 ? doneUnpair1_ : doneUnpair2_;
	}
	
	/**
	 * If false, no further consideration of the given mate is necessary.  It's
	 * not needed for *any* class of alignment: concordant, discordant or
	 * unpaired.
	 */
	inline bool doneWithMate(bool mate1) const {
		bool doneUnpair = mate1 ? doneUnpair1_ : doneUnpair2_;
		uint64_t nun = mate1 ? nunpair1_ : nunpair2_;
		if(!doneUnpair || !doneConcord_) {
			return false; // still needed for future concordant/unpaired alns
		}
		if(!doneDiscord_ && nun == 0) {
			return false; // still needed for future discordant alignments
		}
		return true; // done
	}

	/**
	 * Return true iff there's no need to seek any more unpaired alignments.
	 */
	inline bool doneUnpaired() const { return doneUnpair_; }
	
	/**
	 * Return true iff all alignment stages have been exited.
	 */
	inline bool done() const { return done_; }

	inline uint64_t numConcordant() const { return nconcord_; }
	inline uint64_t numDiscordant() const { return ndiscord_; }
	inline uint64_t numUnpaired1()  const { return nunpair1_; }
	inline uint64_t numUnpaired2()  const { return nunpair2_; }

	inline int exitConcordant() const { return exitConcord_; }
	inline int exitDiscordant() const { return exitDiscord_; }
	inline int exitUnpaired1()  const { return exitUnpair1_; }
	inline int exitUnpaired2()  const { return exitUnpair2_; }

#ifndef NDEBUG
	/**
	 * Check that ReportingState is internally consistent.
	 */
	bool repOk() const {
		assert(p_.discord || doneDiscord_);
		assert(p_.mixed   || !paired_ || doneUnpair_);
		assert(doneUnpair_ || !doneUnpair1_ || !doneUnpair2_);
		if(p_.mhitsSet()) {
			assert_leq(numConcordant(), (uint64_t)p_.mhits+1);
			assert_leq(numDiscordant(), (uint64_t)p_.mhits+1);
			assert(paired_ || numUnpaired1() <= (uint64_t)p_.mhits+1);
			assert(paired_ || numUnpaired2() <= (uint64_t)p_.mhits+1);
		}
		assert(done() || !doneWithMate(true) || !doneWithMate(false));
		return true;
	}
#endif

	/**
	 * Return ReportingParams object governing this ReportingState.
	 */
	const ReportingParams& params() const {
		return p_;
	}

protected:

	/**
	 * Update state to reflect situation after converting two unique unpaired
	 * alignments, one for mate 1 and one for mate 2, into a single discordant
	 * alignment.
	 */
	void convertUnpairedToDiscordant() {
		assert_eq(1, numUnpaired1());
		assert_eq(1, numUnpaired2());
		assert_eq(0, numDiscordant());
		exitUnpair1_ = exitUnpair2_ = ReportingState::EXIT_CONVERTED_TO_DISCORDANT;
		nunpair1_ = nunpair2_ = 0;
		ndiscord_ = 1;
		assert_eq(1, numDiscordant());
	}

	/**
	 * Given the number of alignments in a category, check whether we
	 * short-circuited out of the category.  Set the done and exit arguments to
	 * indicate whether and how we short-circuited.
	 */
	inline void areDone(
		uint64_t cnt,     // # alignments in category
		bool& done,       // out: whether we short-circuited out of category
		int& exit) const; // out: if done, how we short-circuited (-k? -m? etc)
	
	/**
	 * Update done_ field to reflect whether we're totally done now.
	 */
	inline void updateDone() {
		doneUnpair_ = doneUnpair1_ && doneUnpair2_;
		done_ = doneUnpair_ && doneDiscord_ && doneConcord_;
	}

	const ReportingParams& p_;  // reporting parameters
	int state_;          // state we're currently in
	bool paired_;        // true iff read we're currently handling is paired
	uint64_t nconcord_;  // # concordants found so far
	uint64_t ndiscord_;  // # discordants found so far
	uint64_t nunpair1_;  // # unpaired alignments found so far for mate 1
	uint64_t nunpair2_;  // # unpaired alignments found so far for mate 2
	bool doneConcord_;   // true iff we're no longner interested in concordants
	bool doneDiscord_;   // true iff we're no longner interested in discordants
	bool doneUnpair_;    // no longner interested in unpaired alns
	bool doneUnpair1_;   // no longner interested in unpaired alns for mate 1
	bool doneUnpair2_;   // no longner interested in unpaired alns for mate 2
	int exitConcord_;    // flag indicating how we exited concordant state
	int exitDiscord_;    // flag indicating how we exited discordant state
	int exitUnpair1_;    // flag indicating how we exited unpaired 1 state
	int exitUnpair2_;    // flag indicating how we exited unpaired 2 state
	bool done_;          // done with all alignments
};

/**
 * Global hit sink for hits from the MultiSeed aligner.  Encapsulates
 * all aspects of the MultiSeed aligner hitsink that are global to all
 * threads.  This includes aspects relating to:
 *
 * (a) synchronized access to the output stream
 * (b) the policy to be enforced by the per-thread wrapper
 *
 * TODO: Implement splitting up of alignments into separate files
 * according to genomic coordinate.
 */
class AlnSink {

	typedef EList<std::string> StrList;

public:

	explicit AlnSink(
		OutputQueue& oq,
		const StrList& refnames,
		bool quiet) :
		oq_(oq),
		refnames_(refnames),
		quiet_(quiet)
	{ }

	/**
	 * Destroy HitSinkobject;
	 */
	virtual ~AlnSink() { }

	/**
	 * Called when the AlnSink is wrapped by a new AlnSinkWrap.  This helps us
	 * keep track of whether the main lock or any of the per-stream locks will
	 * be contended by multiple threads.
	 */
	void addWrapper() { numWrappers_++; }

	/**
	 * Append a single hit to the given output stream.  If
	 * synchronization is required, append() assumes the caller has
	 * already grabbed the appropriate lock.
	 */
	virtual void append(
		BTString&             o,
		StackedAln&           staln,
		size_t                threadId,
		const Read           *rd1,
		const Read           *rd2,
		const TReadId         rdid,
		AlnRes               *rs1,
		AlnRes               *rs2,
		const AlnSetSumm&     summ,
		const SeedAlSumm&     ssm1,
		const SeedAlSumm&     ssm2,
		const AlnFlags*       flags1,
		const AlnFlags*       flags2,
		const PerReadMetrics& prm,
		const Mapq&           mapq,
		const Scoring&        sc,
		bool                  report2) = 0;

	/**
	 * Report a given batch of hits for the given read or read pair.
	 * Should be called just once per read pair.  Assumes all the
	 * alignments are paired, split between rs1 and rs2.
	 *
	 * The caller hasn't decided which alignments get reported as primary
	 * or secondary; that's up to the routine.  Because the caller might
	 * want to know this, we use the pri1 and pri2 out arguments to
	 * convey this.
	 */
	virtual void reportHits(
		BTString&             o,              // write to this buffer
		StackedAln&           staln,       // StackedAln to write stacked alignment
		size_t                threadId,       // which thread am I?
		const Read           *rd1,            // mate #1
		const Read           *rd2,            // mate #2
		const TReadId         rdid,           // read ID
		const EList<size_t>&  select1,        // random subset of rd1s
		const EList<size_t>*  select2,        // random subset of rd2s
		EList<AlnRes>        *rs1,            // alignments for mate #1
		EList<AlnRes>        *rs2,            // alignments for mate #2
		bool                  maxed,          // true iff -m/-M exceeded
		const AlnSetSumm&     summ,           // summary
		const SeedAlSumm&     ssm1,           // seed alignment summ
		const SeedAlSumm&     ssm2,           // seed alignment summ
		const AlnFlags*       flags1,         // flags for mate #1
		const AlnFlags*       flags2,         // flags for mate #2
		const PerReadMetrics& prm,            // per-read metrics
		const Mapq&           mapq,           // MAPQ generator
		const Scoring&        sc,             // scoring scheme
		bool                  reportBoth,
		bool                  getLock = true) // true iff lock held by caller
	{
		// There are a few scenarios:
		// 1. Read is unpaired, in which case rd2 is NULL
		// 2. Read is paired-end and we're reporting concordant alignments
		// 3. Read is paired-end and we're reporting discordant alignments
		// 4. Read is paired-end and we're reporting unpaired alignments for
		//    both mates
		// 5. Read is paired-end and we're reporting an unpaired alignments for
		//    just one mate or the other
		assert(rd1 != NULL || rd2 != NULL);
		assert(rs1 != NULL || rs2 != NULL);
		AlnFlags flagscp1, flagscp2;
		if(flags1 != NULL) {
			flagscp1 = *flags1;
			flags1 = &flagscp1;
			flagscp1.setPrimary(true);
		}
		if(flags2 != NULL) {
			flagscp2 = *flags2;
			flags2 = &flagscp2;
			flagscp2.setPrimary(true);
		}
		if(select2 != NULL) {
			// Handle case 4
			assert(rd1 != NULL); assert(flags1 != NULL);
			assert(rd2 != NULL); assert(flags2 != NULL);
			assert_gt(select1.size(), 0);
			assert_gt(select2->size(), 0);
			AlnRes* r1pri = ((rs1 != NULL) ? &rs1->get(select1[0]) : NULL);
			AlnRes* r2pri = ((rs2 != NULL) ? &rs2->get((*select2)[0]) : NULL);
			append(o, staln, threadId, rd1, rd2, rdid, r1pri, r2pri, summ,
			       ssm1, ssm2, flags1, flags2, prm, mapq, sc, false);
			flagscp1.setPrimary(false);
			flagscp2.setPrimary(false);
			for(size_t i = 1; i < select1.size(); i++) {
				AlnRes* r1 = ((rs1 != NULL) ? &rs1->get(select1[i]) : NULL);
				append(o, staln, threadId, rd1, rd2, rdid, r1, r2pri, summ,
				       ssm1, ssm2, flags1, flags2, prm, mapq, sc, false);
			}
			if(reportBoth) {
				for(size_t i = 1; i < select2->size(); i++) {
					AlnRes* r2 = ((rs2 != NULL) ? &rs2->get((*select2)[i]) : NULL);
					append(o, staln, threadId, rd2, rd1, rdid, r2, r1pri, summ,
						   ssm2, ssm1, flags2, flags1, prm, mapq, sc, false);
				}
			}
		} else {
			// Handle cases 1-3 and 5
			for(size_t i = 0; i < select1.size(); i++) {
				AlnRes* r1 = ((rs1 != NULL) ? &rs1->get(select1[i]) : NULL);
				AlnRes* r2 = ((rs2 != NULL) ? &rs2->get(select1[i]) : NULL);
				append(o, staln, threadId, rd1, rd2, rdid, r1, r2, summ,
				       ssm1, ssm2, flags1, flags2, prm, mapq, sc, true);
				if(flags1 != NULL) {
					flagscp1.setPrimary(false);
				}
				if(flags2 != NULL) {
					flagscp2.setPrimary(false);
				}
			}
		}
	}

	/**
	 * Report an unaligned read.  Typically we do nothing, but we might
	 * want to print a placeholder when output is chained.
	 */
	virtual void reportUnaligned(
		BTString&             o,              // write to this string
		StackedAln&           staln,          // StackedAln to write stacked alignment
		size_t                threadId,       // which thread am I?
		const Read           *rd1,            // mate #1
		const Read           *rd2,            // mate #2
		const TReadId         rdid,           // read ID
		const AlnSetSumm&     summ,           // summary
		const SeedAlSumm&     ssm1,           // seed alignment summary
		const SeedAlSumm&     ssm2,           // seed alignment summary
		const AlnFlags*       flags1,         // flags for mate #1
		const AlnFlags*       flags2,         // flags for mate #2
		const PerReadMetrics& prm,            // per-read metrics
		const Mapq&           mapq,           // MAPQ calculator
		const Scoring&        sc,             // scoring scheme
		bool                  report2,        // report alns for both mates?
		bool                  getLock = true) // true iff lock held by caller
	{
		append(o, staln, threadId, rd1, rd2, rdid, NULL, NULL, summ,
		       ssm1, ssm2, flags1, flags2, prm, mapq, sc, report2);
	}

	/**
	 * Print summary of how many reads aligned, failed to align and aligned
	 * repetitively.  Write it to stderr.  Optionally write Hadoop counter
	 * updates.
	 */
	void printAlSumm(
		const ReportingMetrics& met,
		size_t repThresh, // threshold for uniqueness, or max if no thresh
		bool discord,     // looked for discordant alignments
		bool mixed,       // looked for unpaired alignments where paired failed?
		bool hadoopOut);  // output Hadoop counters?

	/**
	 * Called when all alignments are complete.  It is assumed that no
	 * synchronization is necessary.
	 */
	void finish(
		size_t repThresh,
		bool discord,
		bool mixed,
		bool hadoopOut)
	{
		// Close output streams
		if(!quiet_) {
			printAlSumm(
				met_,
				repThresh,
				discord,
				mixed,
				hadoopOut);
		}
	}

#ifndef NDEBUG
	/**
	 * Check that hit sink is internally consistent.
	 */
	bool repOk() const { return true; }
#endif
	
	//
	// Related to reporting seed hits
	//

	/**
	 * Given a Read and associated, filled-in SeedResults objects,
	 * print a record summarizing the seed hits.
	 */
	void reportSeedSummary(
		BTString&          o,
		const Read&        rd,
		TReadId            rdid,
		size_t             threadId,
		const SeedResults& rs,
		bool               getLock = true);

	/**
	 * Given a Read, print an empty record (all 0s).
	 */
	void reportEmptySeedSummary(
		BTString&          o,
		const Read&        rd,
		TReadId            rdid,
		size_t             threadId,
		bool               getLock = true);

	/**
	 * Append a batch of unresolved seed alignment results (i.e. seed
	 * alignments where all we know is the reference sequence aligned
	 * to and its SA range, not where it falls in the reference
	 * sequence) to the given output stream in Bowtie's seed-alignment
	 * verbose-mode format.
	 */
	virtual void appendSeedSummary(
		BTString&     o,
		const Read&   rd,
		const TReadId rdid,
		size_t        seedsTried,
		size_t        nonzero,
		size_t        ranges,
		size_t        elts,
		size_t        seedsTriedFw,
		size_t        nonzeroFw,
		size_t        rangesFw,
		size_t        eltsFw,
		size_t        seedsTriedRc,
		size_t        nonzeroRc,
		size_t        rangesRc,
		size_t        eltsRc);

	/**
	 * Merge given metrics in with ours by summing all individual metrics.
	 */
	void mergeMetrics(const ReportingMetrics& met, bool getLock = true) {
		met_.merge(met, getLock);
	}

	/**
	 * Return mutable reference to the shared OutputQueue.
	 */
	OutputQueue& outq() {
		return oq_;
	}

protected:

	OutputQueue&       oq_;           // output queue
	int                numWrappers_;  // # threads owning a wrapper for this HitSink
	const StrList&     refnames_;     // reference names
	bool               quiet_;        // true -> don't print alignment stats at the end
	ReportingMetrics   met_;          // global repository of reporting metrics
};

/**
 * Per-thread hit sink "wrapper" for the MultiSeed aligner.  Encapsulates
 * aspects of the MultiSeed aligner hit sink that are per-thread.  This
 * includes aspects relating to:
 *
 * (a) Enforcement of the reporting policy
 * (b) Tallying of results
 * (c) Storing of results for the previous read in case this allows us to
 *     short-circuit some work for the next read (i.e. if it's identical)
 *
 * PHASED ALIGNMENT ASSUMPTION
 *
 * We make some assumptions about how alignment proceeds when we try to
 * short-circuit work for identical reads.  Specifically, we assume that for
 * each read the aligner proceeds in a series of stages (or perhaps just one
 * stage).  In each stage, the aligner either:
 *
 * (a)  Finds no alignments, or
 * (b)  Finds some alignments and short circuits out of the stage with some
 *      random reporting involved (e.g. in -k and/or -M modes), or
 * (c)  Finds all of the alignments in the stage
 *
 * In the event of (a), the aligner proceeds to the next stage and keeps
 * trying; we can skip the stage entirely for the next read if it's identical.
 * In the event of (b), or (c), the aligner stops and does not proceed to
 * further stages.  In the event of (b1), if the next read is identical we
 * would like to tell the aligner to start again at the beginning of the stage
 * that was short-circuited.
 *
 * In any event, the rs1_/rs2_/rs1u_/rs2u_ fields contain the alignments found
 * in the last alignment stage attempted.
 *
 * HANDLING REPORTING LIMITS
 *
 * The user can specify reporting limits, like -k (specifies number of
 * alignments to report out of those found) and -M (specifies a ceiling s.t. if
 * there are more alignments than the ceiling, read is called repetitive and
 * best found is reported).  Enforcing these limits is straightforward for
 * unpaired alignments: if a new alignment causes us to exceed the -M ceiling,
 * we can stop looking.
 *
 * The case where both paired-end and unpaired alignments are possible is
 * trickier.  Once we have a number of unpaired alignments that exceeds the
 * ceiling, we can stop looking *for unpaired alignments* - but we can't
 * necessarily stop looking for paired-end alignments, since there may yet be
 * more to find.  However, if the input read is not a pair, then we can stop at
 * this point.  If the input read is a pair and we have a number of paired
 * aligments that exceeds the -M ceiling, we can stop looking.
 *
 * CONCORDANT & DISCORDANT, PAIRED & UNPAIRED
 *
 * A note on paired-end alignment: Clearly, if an input read is
 * paired-end and we find either concordant or discordant paired-end
 * alignments for the read, then we would like to tally and report
 * those alignments as such (and not as groups of 2 unpaired
 * alignments).  And if we fail to find any paired-end alignments, but
 * we do find some unpaired alignments for one mate or the other, then
 * we should clearly tally and report those alignments as unpaired
 * alignments (if the user so desires).
 *
 * The situation is murkier when there are no paired-end alignments,
 * but there are unpaired alignments for *both* mates.  In this case,
 * we might want to pick out zero or more pairs of mates and classify
 * those pairs as discordant paired-end alignments.  And we might want
 * to classify the remaining alignments as unpaired.  But how do we
 * pick which pairs if any to call discordant?
 *
 * Because the most obvious use for discordant pairs is for identifying
 * large-scale variation, like rearrangements or large indels, we would
 * usually like to be conservative about what we call a discordant
 * alignment.  If there's a good chance that one or the other of the
 * two mates has a good alignment to another place on the genome, this
 * compromises the evidence for the large-scale variant.  For this
 * reason, Bowtie 2's policy is: if there are no paired-end alignments
 * and there is *exactly one alignment each* for both mates, then the
 * two alignments are paired and treated as a discordant paired-end
 * alignment.  Otherwise, all alignments are treated as unpaired
 * alignments.
 *
 * When both paired and unpaired alignments are discovered by the
 * aligner, only the paired alignments are reported by default.  This
 * is sensible considering relative likelihoods: if a good paired-end
 * alignment is found, it is much more likely that the placement of
 * the two mates implied by that paired alignment is correct than any
 * placement implied by an unpaired alignment.
 *
 * 
 */
class AlnSinkWrap {
public:

	AlnSinkWrap(
		AlnSink& g,                // AlnSink being wrapped
		const ReportingParams& rp, // Parameters governing reporting
		Mapq& mapq,                // Mapq calculator
		size_t threadId) :         // Thread ID
		g_(g),
		rp_(rp),
		threadid_(threadId),
		mapq_(mapq),
		init_(false),   
		maxed1_(false),       // read is pair and we maxed out mate 1 unp alns
		maxed2_(false),       // read is pair and we maxed out mate 2 unp alns
		maxedOverall_(false), // alignments found so far exceed -m/-M ceiling
		bestPair_(std::numeric_limits<TAlScore>::min()),
		best2Pair_(std::numeric_limits<TAlScore>::min()),
		bestUnp1_(std::numeric_limits<TAlScore>::min()),
		best2Unp1_(std::numeric_limits<TAlScore>::min()),
		bestUnp2_(std::numeric_limits<TAlScore>::min()),
		best2Unp2_(std::numeric_limits<TAlScore>::min()),
		rd1_(NULL),    // mate 1
		rd2_(NULL),    // mate 2
		rdid_(std::numeric_limits<TReadId>::max()), // read id
		rs1_(),        // mate 1 alignments for paired-end alignments
		rs2_(),        // mate 2 alignments for paired-end alignments
		rs1u_(),       // mate 1 unpaired alignments
		rs2u_(),       // mate 2 unpaired alignments
		select1_(),    // for selecting random subsets for mate 1
		select2_(),    // for selecting random subsets for mate 2
		st_(rp)        // reporting state - what's left to do?
	{
		assert(rp_.repOk());
	}

	/**
	 * Initialize the wrapper with a new read pair and return an
	 * integer >= -1 indicating which stage the aligner should start
	 * at.  If -1 is returned, the aligner can skip the read entirely.
	 * at.  If .  Checks if the new read pair is identical to the
	 * previous pair.  If it is, then we return the id of the first
	 * stage to run.
	 */
	int nextRead(
		// One of the other of rd1, rd2 will = NULL if read is unpaired
		const Read* rd1,      // new mate #1
		const Read* rd2,      // new mate #2
		TReadId rdid,         // read ID for new pair
		bool qualitiesMatter);// aln policy distinguishes b/t quals?

	/**
	 * Inform global, shared AlnSink object that we're finished with
	 * this read.  The global AlnSink is responsible for updating
	 * counters, creating the output record, and delivering the record
	 * to the appropriate output stream.
	 */
	void finishRead(
		const SeedResults *sr1,         // seed alignment results for mate 1
		const SeedResults *sr2,         // seed alignment results for mate 2
		bool               exhaust1,    // mate 1 exhausted?
		bool               exhaust2,    // mate 2 exhausted?
		bool               nfilt1,      // mate 1 N-filtered?
		bool               nfilt2,      // mate 2 N-filtered?
		bool               scfilt1,     // mate 1 score-filtered?
		bool               scfilt2,     // mate 2 score-filtered?
		bool               lenfilt1,    // mate 1 length-filtered?
		bool               lenfilt2,    // mate 2 length-filtered?
		bool               qcfilt1,     // mate 1 qc-filtered?
		bool               qcfilt2,     // mate 2 qc-filtered?
		RandomSource&      rnd,         // pseudo-random generator
		ReportingMetrics&  met,         // reporting metrics
		const PerReadMetrics& prm,      // per-read metrics
		const Scoring& sc,              // scoring scheme
		bool suppressSeedSummary = true,
		bool suppressAlignments = false);
	
	/**
	 * Called by the aligner when a new unpaired or paired alignment is
	 * discovered in the given stage.  This function checks whether the
	 * addition of this alignment causes the reporting policy to be
	 * violated (by meeting or exceeding the limits set by -k, -m, -M),
	 * in which case true is returned immediately and the aligner is
	 * short circuited.  Otherwise, the alignment is tallied and false
	 * is returned.
	 */
	bool report(
		int stage,
		const AlnRes* rs1,
		const AlnRes* rs2);

#ifndef NDEBUG
	/**
	 * Check that hit sink wrapper is internally consistent.
	 */
	bool repOk() const {
		assert_eq(rs2_.size(), rs1_.size());
		if(rp_.mhitsSet()) {
			assert_gt(rp_.mhits, 0);
			assert_leq((int)rs1_.size(), rp_.mhits+1);
			assert_leq((int)rs2_.size(), rp_.mhits+1);
			assert(readIsPair() || (int)rs1u_.size() <= rp_.mhits+1);
			assert(readIsPair() || (int)rs2u_.size() <= rp_.mhits+1);
		}
		if(init_) {
			assert(rd1_ != NULL);
			assert_neq(std::numeric_limits<TReadId>::max(), rdid_);
		}
		assert_eq(st_.numConcordant() + st_.numDiscordant(), rs1_.size());
		//assert_eq(st_.numUnpaired1(), rs1u_.size());
		//assert_eq(st_.numUnpaired2(), rs2u_.size());
		assert(st_.repOk());
		return true;
	}
#endif
	
	/**
	 * Return true iff no alignments have been reported to this wrapper
	 * since the last call to nextRead().
	 */
	bool empty() const {
		return rs1_.empty() && rs1u_.empty() && rs2u_.empty();
	}
	
	/**
	 * Return true iff we have already encountered a number of alignments that
	 * exceeds the -m/-M ceiling.  TODO: how does this distinguish between
	 * pairs and mates?
	 */
	bool maxed() const {
		return maxedOverall_;
	}
	
	/**
	 * Return true if the current read is paired.
	 */
	bool readIsPair() const {
		return rd1_ != NULL && rd2_ != NULL;
	}
	
	/**
	 * Return true iff nextRead() has been called since the last time
	 * finishRead() was called.
	 */
	bool inited() const { return init_; }

	/**
	 * Return a const ref to the ReportingState object associated with the
	 * AlnSinkWrap.
	 */
	const ReportingState& state() const { return st_; }
	
	/**
	 * Return true iff we're in -M mode.
	 */
	bool Mmode() const {
		return rp_.mhitsSet();
	}
	
	/**
	 * Return true iff the policy is to report all hits.
	 */
	bool allHits() const {
		return rp_.allHits();
	}
	
	/**
	 * Return true iff at least two alignments have been reported so far for an
	 * unpaired read or mate 1.
	 */
	bool hasSecondBestUnp1() const {
		return best2Unp1_ != std::numeric_limits<TAlScore>::min();
	}

	/**
	 * Return true iff at least two alignments have been reported so far for
	 * mate 2.
	 */
	bool hasSecondBestUnp2() const {
		return best2Unp2_ != std::numeric_limits<TAlScore>::min();
	}

	/**
	 * Return true iff at least two paired-end alignments have been reported so
	 * far.
	 */
	bool hasSecondBestPair() const {
		return best2Pair_ != std::numeric_limits<TAlScore>::min();
	}
	
	/**
	 * Get best score observed so far for an unpaired read or mate 1.
	 */
	TAlScore bestUnp1() const {
		return bestUnp1_;
	}

	/**
	 * Get second-best score observed so far for an unpaired read or mate 1.
	 */
	TAlScore secondBestUnp1() const {
		return best2Unp1_;
	}

	/**
	 * Get best score observed so far for mate 2.
	 */
	TAlScore bestUnp2() const {
		return bestUnp2_;
	}

	/**
	 * Get second-best score observed so far for mate 2.
	 */
	TAlScore secondBestUnp2() const {
		return best2Unp2_;
	}

	/**
	 * Get best score observed so far for paired-end read.
	 */
	TAlScore bestPair() const {
		return bestPair_;
	}

	/**
	 * Get second-best score observed so far for paired-end read.
	 */
	TAlScore secondBestPair() const {
		return best2Pair_;
	}

protected:

	/**
	 * Return true iff the read in rd1/rd2 matches the last read handled, which
	 * should still be in rd1_/rd2_.
	 */
	bool sameRead(
		const Read* rd1,
		const Read* rd2,
		bool qualitiesMatter);

	/**
	 * If there is a configuration of unpaired alignments that fits our
	 * criteria for there being one or more discordant alignments, then
	 * shift the discordant alignments over to the rs1_/rs2_ lists, clear the
	 * rs1u_/rs2u_ lists and return true.  Otherwise, return false.
	 */
	bool prepareDiscordants();

	/**
	 * Given that rs is already populated with alignments, consider the
	 * alignment policy and make random selections where necessary.  E.g. if we
	 * found 10 alignments and the policy is -k 2 -m 20, select 2 alignments at
	 * random.  We "select" an alignment by setting the parallel entry in the
	 * 'select' list to true.
	 */
	size_t selectAlnsToReport(
		const EList<AlnRes>& rs,     // alignments to select from
		uint64_t             num,    // number of alignments to select
		EList<size_t>&       select, // list to put results in
		RandomSource&        rnd)
		const;

	/**
	 * rs1 (possibly together with rs2 if reads are paired) are populated with
	 * alignments.  Here we prioritize them according to alignment score, and
	 * some randomness to break ties.  Priorities are returned in the 'select'
	 * list.
	 */
	size_t selectByScore(
		const EList<AlnRes>* rs1,    // alignments to select from (mate 1)
		const EList<AlnRes>* rs2,    // alignments to select from (mate 2, or NULL)
		uint64_t             num,    // number of alignments to select
		EList<size_t>&       select, // prioritized list to put results in
		const EList<AlnRes>* rs1u,   // alignments to select from (mate 1)
		const EList<AlnRes>* rs2u,   // alignments to select from (mate 2, or NULL)
		AlnScore&            bestUnchosen1,
		AlnScore&            bestUnchosen2,
		AlnScore&            bestUnchosenC,
		RandomSource&        rnd)
		const;

	AlnSink&        g_;     // global alignment sink
	ReportingParams rp_;    // reporting parameters: khits, mhits etc
	size_t          threadid_; // thread ID
	Mapq&           mapq_;  // mapq calculator
	bool            init_;  // whether we're initialized w/ read pair
	bool            maxed1_; // true iff # unpaired mate-1 alns reported so far exceeded -m/-M
	bool            maxed2_; // true iff # unpaired mate-2 alns reported so far exceeded -m/-M
	bool            maxedOverall_; // true iff # paired-end alns reported so far exceeded -m/-M
	TAlScore        bestPair_;     // greatest score so far for paired-end
	TAlScore        best2Pair_;    // second-greatest score so far for paired-end
	TAlScore        bestUnp1_;     // greatest score so far for unpaired/mate1
	TAlScore        best2Unp1_;    // second-greatest score so far for unpaired/mate1
	TAlScore        bestUnp2_;     // greatest score so far for mate 2
	TAlScore        best2Unp2_;    // second-greatest score so far for mate 2
	const Read*     rd1_;   // mate #1
	const Read*     rd2_;   // mate #2
	TReadId         rdid_;  // read ID (potentially used for ordering)
	EList<AlnRes>   rs1_;   // paired alignments for mate #1
	EList<AlnRes>   rs2_;   // paired alignments for mate #2
	EList<AlnRes>   rs1u_;  // unpaired alignments for mate #1
	EList<AlnRes>   rs2u_;  // unpaired alignments for mate #2
	EList<size_t>   select1_; // parallel to rs1_/rs2_ - which to report
	EList<size_t>   select2_; // parallel to rs1_/rs2_ - which to report
	ReportingState  st_;      // reporting state - what's left to do?
	
	EList<std::pair<AlnScore, size_t> > selectBuf_;
	BTString obuf_;
	StackedAln staln_;
};

/**
 * An AlnSink concrete subclass for printing SAM alignments.  The user might
 * want to customize SAM output in various ways.  We encapsulate all these
 * customizations, and some of the key printing routines, in the SamConfig
 * class in sam.h/sam.cpp.
 */
class AlnSinkSam : public AlnSink {

	typedef EList<std::string> StrList;

public:

	AlnSinkSam(
		OutputQueue&     oq,           // output queue
		const SamConfig& samc,         // settings & routines for SAM output
		const StrList&   refnames,     // reference names
		bool             quiet) :      // don't print alignment summary at end
		AlnSink(
			oq,
			refnames,
			quiet),
		samc_(samc)
	{ }
	
	virtual ~AlnSinkSam() { }

	/**
	 * Append a single alignment result, which might be paired or
	 * unpaired, to the given output stream in Bowtie's verbose-mode
	 * format.  If the alignment is paired-end, print mate1's alignment
	 * then mate2's alignment.
	 */
	virtual void append(
		BTString&     o,           // write output to this string
		StackedAln&   staln,       // StackedAln to write stacked alignment
		size_t        threadId,    // which thread am I?
		const Read*   rd1,         // mate #1
		const Read*   rd2,         // mate #2
		const TReadId rdid,        // read ID
		AlnRes* rs1,               // alignments for mate #1
		AlnRes* rs2,               // alignments for mate #2
		const AlnSetSumm& summ,    // summary
		const SeedAlSumm& ssm1,    // seed alignment summary
		const SeedAlSumm& ssm2,    // seed alignment summary
		const AlnFlags* flags1,    // flags for mate #1
		const AlnFlags* flags2,    // flags for mate #2
		const PerReadMetrics& prm, // per-read metrics
		const Mapq& mapq,          // MAPQ calculator
		const Scoring& sc,         // scoring scheme
		bool report2)              // report alns for both mates
	{
		assert(rd1 != NULL || rd2 != NULL);
		if(rd1 != NULL) {
			assert(flags1 != NULL);
			appendMate(o, staln, *rd1, rd2, rdid, rs1, rs2, summ, ssm1, ssm2,
			           *flags1, prm, mapq, sc);
		}
		if(rd2 != NULL && report2) {
			assert(flags2 != NULL);
			appendMate(o, staln, *rd2, rd1, rdid, rs2, rs1, summ, ssm2, ssm1,
			           *flags2, prm, mapq, sc);
		}
	}

protected:

	/**
	 * Append a single per-mate alignment result to the given output
	 * stream.  If the alignment is part of a pair, information about
	 * the opposite mate and its alignment are given in rdo/rso.
	 */
	void appendMate(
		BTString&     o,
		StackedAln&   staln,
		const Read&   rd,
		const Read*   rdo,
		const TReadId rdid,
		AlnRes* rs,
		AlnRes* rso,
		const AlnSetSumm& summ,
		const SeedAlSumm& ssm,
		const SeedAlSumm& ssmo,
		const AlnFlags& flags,
		const PerReadMetrics& prm, // per-read metrics
		const Mapq& mapq,          // MAPQ calculator
		const Scoring& sc);        // scoring scheme

	const SamConfig& samc_;    // settings & routines for SAM output
	BTDnaString      dseq_;    // buffer for decoded read sequence
	BTString         dqual_;   // buffer for decoded quality sequence
};

#endif /*ndef ALN_SINK_H_*/