File: sse_util.h

package info (click to toggle)
bowtie2 2.2.4-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 20,280 kB
  • ctags: 5,481
  • sloc: cpp: 58,605; perl: 1,190; sh: 1,036; makefile: 370; ansic: 122; python: 95
file content (579 lines) | stat: -rw-r--r-- 14,560 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
/*
 * Copyright 2011, Ben Langmead <langmea@cs.jhu.edu>
 *
 * This file is part of Bowtie 2.
 *
 * Bowtie 2 is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * Bowtie 2 is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with Bowtie 2.  If not, see <http://www.gnu.org/licenses/>.
 */

#ifndef SSE_UTIL_H_
#define SSE_UTIL_H_

#include "assert_helpers.h"
#include "ds.h"
#include "limit.h"
#include <iostream>
#include <emmintrin.h>

class EList_m128i {
public:

	/**
	 * Allocate initial default of S elements.
	 */
	explicit EList_m128i(int cat = 0) :
		cat_(cat), last_alloc_(NULL), list_(NULL), sz_(0), cur_(0)
	{
		assert_geq(cat, 0);
	}

	/**
	 * Destructor.
	 */
	~EList_m128i() { free(); }

	/**
	 * Return number of elements.
	 */
	inline size_t size() const { return cur_; }

	/**
	 * Return number of elements allocated.
	 */
	inline size_t capacity() const { return sz_; }
	
	/**
	 * Ensure that there is sufficient capacity to expand to include
	 * 'thresh' more elements without having to expand.
	 */
	inline void ensure(size_t thresh) {
		if(list_ == NULL) lazyInit();
		expandCopy(cur_ + thresh);
	}

	/**
	 * Ensure that there is sufficient capacity to include 'newsz' elements.
	 * If there isn't enough capacity right now, expand capacity to exactly
	 * equal 'newsz'.
	 */
	inline void reserveExact(size_t newsz) {
		if(list_ == NULL) lazyInitExact(newsz);
		expandCopyExact(newsz);
	}

	/**
	 * Return true iff there are no elements.
	 */
	inline bool empty() const { return cur_ == 0; }
	
	/**
	 * Return true iff list hasn't been initialized yet.
	 */
	inline bool null() const { return list_ == NULL; }

	/**
	 * If size is less than requested size, resize up to at least sz
	 * and set cur_ to requested sz.
	 */
	void resize(size_t sz) {
		if(sz > 0 && list_ == NULL) lazyInit();
		if(sz <= cur_) {
			cur_ = sz;
			return;
		}
		if(sz_ < sz) {
			expandCopy(sz);
		}
		cur_ = sz;
	}
	
	/**
	 * Zero out contents of vector.
	 */
	void zero() {
		if(cur_ > 0) {
			memset(list_, 0, cur_ * sizeof(__m128i));
		}
	}

	/**
	 * If size is less than requested size, resize up to at least sz
	 * and set cur_ to requested sz.  Do not copy the elements over.
	 */
	void resizeNoCopy(size_t sz) {
		if(sz > 0 && list_ == NULL) lazyInit();
		if(sz <= cur_) {
			cur_ = sz;
			return;
		}
		if(sz_ < sz) {
			expandNoCopy(sz);
		}
		cur_ = sz;
	}

	/**
	 * If size is less than requested size, resize up to exactly sz and set
	 * cur_ to requested sz.
	 */
	void resizeExact(size_t sz) {
		if(sz > 0 && list_ == NULL) lazyInitExact(sz);
		if(sz <= cur_) {
			cur_ = sz;
			return;
		}
		if(sz_ < sz) expandCopyExact(sz);
		cur_ = sz;
	}

	/**
	 * Make the stack empty.
	 */
	void clear() {
		cur_ = 0; // re-use stack memory
		// Don't clear heap; re-use it
	}

	/**
	 * Return a reference to the ith element.
	 */
	inline __m128i& operator[](size_t i) {
		assert_lt(i, cur_);
		return list_[i];
	}

	/**
	 * Return a reference to the ith element.
	 */
	inline __m128i operator[](size_t i) const {
		assert_lt(i, cur_);
		return list_[i];
	}

	/**
	 * Return a reference to the ith element.
	 */
	inline __m128i& get(size_t i) {
		return operator[](i);
	}
	
	/**
	 * Return a reference to the ith element.
	 */
	inline __m128i get(size_t i) const {
		return operator[](i);
	}

	/**
	 * Return a pointer to the beginning of the buffer.
	 */
	__m128i *ptr() { return list_; }

	/**
	 * Return a const pointer to the beginning of the buffer.
	 */
	const __m128i *ptr() const { return list_; }

	/**
	 * Return memory category.
	 */
	int cat() const { return cat_; }

private:

	/**
	 * Initialize memory for EList.
	 */
	void lazyInit() {
		assert(list_ == NULL);
		list_ = alloc(sz_);
	}

	/**
	 * Initialize exactly the prescribed number of elements for EList.
	 */
	void lazyInitExact(size_t sz) {
		assert_gt(sz, 0);
		assert(list_ == NULL);
		sz_ = sz;
		list_ = alloc(sz);
	}

	/**
	 * Allocate a T array of length sz_ and store in list_.  Also,
	 * tally into the global memory tally.
	 */
	__m128i *alloc(size_t sz) {
		__m128i* last_alloc_;
		try {
			last_alloc_ = new __m128i[sz + 2];
		} catch(std::bad_alloc& e) {
			std::cerr << "Error: Out of memory allocating " << sz << " __m128i's for DP matrix: '" << e.what() << "'" << std::endl;
			throw e;
		}
                this->last_alloc_ = last_alloc_;
		__m128i* tmp = last_alloc_;
		size_t tmpint = (size_t)tmp;
		// Align it!
		if((tmpint & 0xf) != 0) {
			tmpint += 15;
			tmpint &= (~0xf);
			tmp = reinterpret_cast<__m128i*>(tmpint);
		}
		assert_eq(0, (tmpint & 0xf)); // should be 16-byte aligned
		assert(tmp != NULL);
		gMemTally.add(cat_, sz);
		return tmp;
	}

	/**
	 * Allocate a T array of length sz_ and store in list_.  Also,
	 * tally into the global memory tally.
	 */
	void free() {
		if(list_ != NULL) {
			delete[] last_alloc_;
			gMemTally.del(cat_, sz_);
			list_ = NULL;
			sz_ = cur_ = 0;
		}
	}

	/**
	 * Expand the list_ buffer until it has at least 'thresh' elements.  Size
	 * increases quadratically with number of expansions.  Copy old contents
	 * into new buffer using operator=.
	 */
	void expandCopy(size_t thresh) {
		if(thresh <= sz_) return;
		size_t newsz = (sz_ * 2)+1;
		while(newsz < thresh) newsz *= 2;
		expandCopyExact(newsz);
	}

	/**
	 * Expand the list_ buffer until it has exactly 'newsz' elements.  Copy
	 * old contents into new buffer using operator=.
	 */
	void expandCopyExact(size_t newsz) {
		if(newsz <= sz_) return;
                __m128i* prev_last_alloc = last_alloc_;
		__m128i* tmp = alloc(newsz);
		assert(tmp != NULL);
		size_t cur = cur_;
		if(list_ != NULL) {
 			for(size_t i = 0; i < cur_; i++) {
				// Note: operator= is used
				tmp[i] = list_[i];
			}
                        __m128i* current_last_alloc = last_alloc_;
                        last_alloc_ = prev_last_alloc;
			free();
                        last_alloc_ = current_last_alloc;
		}
		list_ = tmp;
		sz_ = newsz;
		cur_ = cur;
	}

	/**
	 * Expand the list_ buffer until it has at least 'thresh' elements.
	 * Size increases quadratically with number of expansions.  Don't copy old
	 * contents into the new buffer.
	 */
	void expandNoCopy(size_t thresh) {
		assert(list_ != NULL);
		if(thresh <= sz_) return;
		size_t newsz = (sz_ * 2)+1;
		while(newsz < thresh) newsz *= 2;
		expandNoCopyExact(newsz);
	}

	/**
	 * Expand the list_ buffer until it has exactly 'newsz' elements.  Don't
	 * copy old contents into the new buffer.
	 */
	void expandNoCopyExact(size_t newsz) {
		assert(list_ != NULL);
		assert_gt(newsz, 0);
		free();
		__m128i* tmp = alloc(newsz);
		assert(tmp != NULL);
		list_ = tmp;
		sz_ = newsz;
		assert_gt(sz_, 0);
	}

	int      cat_;        // memory category, for accounting purposes
	__m128i* last_alloc_; // what new[] originally returns
	__m128i *list_;       // list ptr, aligned version of what new[] returns
	size_t   sz_;         // capacity
	size_t   cur_;        // occupancy (AKA size)
};

struct  CpQuad {
	CpQuad() { reset(); }
	
	void reset() { sc[0] = sc[1] = sc[2] = sc[3] = 0; }
	
	bool operator==(const CpQuad& o) const {
		return sc[0] == o.sc[0] &&
		       sc[1] == o.sc[1] &&
			   sc[2] == o.sc[2] &&
			   sc[3] == o.sc[3];
	}

	int16_t sc[4];
};

/**
 * Encapsulates a collection of checkpoints.  Assumes the scheme is to
 * checkpoint adjacent pairs of anti-diagonals.
 */
class Checkpointer {

public:

	Checkpointer() { reset(); }
	
	/**
	 * Set the checkpointer up for a new rectangle.
	 */
	void init(
		size_t nrow,          // # of rows
		size_t ncol,          // # of columns
		size_t perpow2,       // checkpoint every 1 << perpow2 diags (& next)
		int64_t perfectScore, // what is a perfect score?  for sanity checks
		bool is8,             // 8-bit?
		bool doTri,           // triangle shaped?
		bool local,           // is alignment local?  for sanity checks
		bool debug)           // gather debug checkpoints?
	{
		assert_gt(perpow2, 0);
		nrow_ = nrow;
		ncol_ = ncol;
		perpow2_ = perpow2;
		per_ = 1 << perpow2;
		lomask_ = ~(0xffffffff << perpow2);
		perf_ = perfectScore;
		local_ = local;
		ndiag_ = (ncol + nrow - 1 + 1) / per_;
		locol_ = MAX_SIZE_T;
		hicol_ = MIN_SIZE_T;
//		debug_ = debug;
		debug_ = true;
		commitMap_.clear();
		firstCommit_ = true;
		size_t perword = (is8 ? 16 : 8);
		is8_ = is8;
		niter_ = ((nrow_ + perword - 1) / perword);
		if(doTri) {
			// Save a pair of anti-diagonals every per_ anti-diagonals for
			// backtrace purposes
			qdiag1s_.resize(ndiag_ * nrow_);
			qdiag2s_.resize(ndiag_ * nrow_);
		} else {
			// Save every per_ columns and rows for backtrace purposes
			qrows_.resize((nrow_ / per_) * ncol_);
			qcols_.resize((ncol_ / per_) * (niter_ << 2));
		}
		if(debug_) {
			// Save all columns for debug purposes
			qcolsD_.resize(ncol_ * (niter_ << 2));
		}
	}
	
	/**
	 * Return true iff we've been collecting debug cells.
	 */
	bool debug() const { return debug_; }
	
	/**
	 * Check whether the given score matches the saved score at row, col, hef.
	 */
	int64_t debugCell(size_t row, size_t col, int hef) const {
		assert(debug_);
		const __m128i* ptr = qcolsD_.ptr() + hef;
		// Fast forward to appropriate column
		ptr += ((col * niter_) << 2);
		size_t mod = row % niter_; // which m128i
		size_t div = row / niter_; // offset into m128i
		// Fast forward to appropriate word
		ptr += (mod << 2);
		// Extract score
		int16_t sc = (is8_ ? ((uint8_t*)ptr)[div] : ((int16_t*)ptr)[div]);
		int64_t asc = MIN_I64;
		// Convert score
		if(is8_) {
			if(local_) {
				asc = sc;
			} else {
				if(sc == 0) asc = MIN_I64;
				else asc = sc - 0xff;
			}
		} else {
			if(local_) {
				asc = sc + 0x8000;
			} else {
				if(sc != MIN_I16) asc = sc - 0x7fff;
			}
		}
		return asc;
	}
	
	/**
	 * Return true iff the given row/col is checkpointed.
	 */
	bool isCheckpointed(size_t row, size_t col) const {
		assert_leq(col, hicol_);
		assert_geq(col, locol_);
		size_t mod = (row + col) & lomask_;
		assert_lt(mod, per_);
		return mod >= per_ - 2;
	}

	/**
	 * Return the checkpointed H, E, or F score from the given cell.
	 */
	inline int64_t scoreTriangle(size_t row, size_t col, int hef) const {
		assert(isCheckpointed(row, col));
		bool diag1 = ((row + col) & lomask_) == per_ - 2;
		size_t off = (row + col) >> perpow2_;
		if(diag1) {
			if(qdiag1s_[off * nrow_ + row].sc[hef] == MIN_I16) {
				return MIN_I64;
			} else {
				return qdiag1s_[off * nrow_ + row].sc[hef];
			}
		} else {
			if(qdiag2s_[off * nrow_ + row].sc[hef] == MIN_I16) {
				return MIN_I64;
			} else {
				return qdiag2s_[off * nrow_ + row].sc[hef];
			}
		}
	}

	/**
	 * Return the checkpointed H, E, or F score from the given cell.
	 */
	inline int64_t scoreSquare(size_t row, size_t col, int hef) const {
		// Is it in a checkpointed row?  Note that checkpointed rows don't
		// necessarily have the horizontal contributions calculated, so we want
		// to use the column info in that case.
		if((row & lomask_) == lomask_ && hef != 1) {
			int64_t sc = qrows_[(row >> perpow2_) * ncol_ + col].sc[hef];
			if(sc == MIN_I16) return MIN_I64;
			return sc;
		}
		hef--;
		if(hef == -1) hef = 2;
		// It must be in a checkpointed column
		assert_eq(lomask_, (col & lomask_));
		// Fast forward to appropriate column
		const __m128i* ptr = qcols_.ptr() + hef;
		ptr += (((col >> perpow2_) * niter_) << 2);
		size_t mod = row % niter_; // which m128i
		size_t div = row / niter_; // offset into m128i
		// Fast forward to appropriate word
		ptr += (mod << 2);
		// Extract score
		int16_t sc = (is8_ ? ((uint8_t*)ptr)[div] : ((int16_t*)ptr)[div]);
		int64_t asc = MIN_I64;
		// Convert score
		if(is8_) {
			if(local_) {
				asc = sc;
			} else {
				if(sc == 0) asc = MIN_I64;
				else asc = sc - 0xff;
			}
		} else {
			if(local_) {
				asc = sc + 0x8000;
			} else {
				if(sc != MIN_I16) asc = sc - 0x7fff;
			}
		}
		return asc;
	}

	/**
	 * Given a column of filled-in cells, save the checkpointed cells in cs_.
	 */
	void commitCol(__m128i *pvH, __m128i *pvE, __m128i *pvF, size_t coli);
	
	/**
	 * Reset the state of the Checkpointer.
	 */
	void reset() {
		perpow2_ = per_ = lomask_ = nrow_ = ncol_ = 0;
		local_ = false;
		niter_ = ndiag_ = locol_ = hicol_ = 0;
		perf_ = 0;
		firstCommit_ = true;
		is8_ = debug_ = false;
	}
	
	/**
	 * Return true iff the Checkpointer has been initialized.
	 */
	bool inited() const {
		return nrow_ > 0;
	}
	
	size_t per()     const { return per_;     }
	size_t perpow2() const { return perpow2_; }
	size_t lomask()  const { return lomask_;  }
	size_t locol()   const { return locol_;   }
	size_t hicol()   const { return hicol_;   }
	size_t nrow()    const { return nrow_;    }
	size_t ncol()    const { return ncol_;    }
	
	const CpQuad* qdiag1sPtr() const { return qdiag1s_.ptr(); }
	const CpQuad* qdiag2sPtr() const { return qdiag2s_.ptr(); }

	size_t   perpow2_;   // 1 << perpow2_ - 2 is the # of uncheckpointed
	                     // anti-diags between checkpointed anti-diag pairs
	size_t   per_;       // 1 << perpow2_
	size_t   lomask_;    // mask for extracting low bits
	size_t   nrow_;      // # rows in current rectangle
	size_t   ncol_;      // # cols in current rectangle
	int64_t  perf_;      // perfect score
	bool     local_;     // local alignment?
	
	size_t   ndiag_;     // # of double-diags
	
	size_t   locol_;     // leftmost column committed
	size_t   hicol_;     // rightmost column committed

	// Map for committing scores from vector columns to checkpointed diagonals
	EList<size_t> commitMap_;
	bool          firstCommit_;
	
	EList<CpQuad> qdiag1s_; // checkpoint H/E/F values for diagonal 1
	EList<CpQuad> qdiag2s_; // checkpoint H/E/F values for diagonal 2

	EList<CpQuad> qrows_;   // checkpoint H/E/F values for rows
	
	// We store columns in this way to reduce overhead of populating them
	bool          is8_;     // true -> fill used 8-bit cells
	size_t        niter_;   // # __m128i words per column
	EList_m128i   qcols_;   // checkpoint E/F/H values for select columns
	
	bool          debug_;   // get debug checkpoints? (i.e. fill qcolsD_?)
	EList_m128i   qcolsD_;  // checkpoint E/F/H values for all columns (debug)
};

#endif