File: PyPerfBPFProgram.cc

package info (click to toggle)
bpfcc 0.18.0%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,368 kB
  • sloc: ansic: 132,727; python: 36,226; cpp: 26,973; sh: 710; yacc: 525; makefile: 141; lex: 94
file content (496 lines) | stat: -rw-r--r-- 15,734 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
/*
 * Copyright (c) Facebook, Inc.
 * Licensed under the Apache License, Version 2.0 (the "License")
 */

#include <string>

namespace ebpf {
namespace pyperf {

extern const std::string PYPERF_BPF_PROGRAM = R"(
#include <linux/sched.h>
#include <uapi/linux/ptrace.h>

#define PYTHON_STACK_FRAMES_PER_PROG 25
#define PYTHON_STACK_PROG_CNT 3
#define STACK_MAX_LEN (PYTHON_STACK_FRAMES_PER_PROG * PYTHON_STACK_PROG_CNT)
#define CLASS_NAME_LEN 32
#define FUNCTION_NAME_LEN 64
#define FILE_NAME_LEN 128
#define TASK_COMM_LEN 16

enum {
  STACK_STATUS_COMPLETE = 0,
  STACK_STATUS_ERROR = 1,
  STACK_STATUS_TRUNCATED = 2,
};

enum {
  GIL_STATE_NO_INFO = 0,
  GIL_STATE_ERROR = 1,
  GIL_STATE_UNINITIALIZED = 2,
  GIL_STATE_NOT_LOCKED = 3,
  GIL_STATE_THIS_THREAD = 4,
  GIL_STATE_GLOBAL_CURRENT_THREAD = 5,
  GIL_STATE_OTHER_THREAD = 6,
  GIL_STATE_NULL = 7,
};

enum {
  THREAD_STATE_UNKNOWN = 0,
  THREAD_STATE_MATCH = 1,
  THREAD_STATE_MISMATCH = 2,
  THREAD_STATE_THIS_THREAD_NULL = 3,
  THREAD_STATE_GLOBAL_CURRENT_THREAD_NULL = 4,
  THREAD_STATE_BOTH_NULL = 5,
};

enum {
  PTHREAD_ID_UNKNOWN = 0,
  PTHREAD_ID_MATCH = 1,
  PTHREAD_ID_MISMATCH = 2,
  PTHREAD_ID_THREAD_STATE_NULL = 3,
  PTHREAD_ID_NULL = 4,
  PTHREAD_ID_ERROR = 5,
};

typedef struct {
  int64_t PyObject_type;
  int64_t PyTypeObject_name;
  int64_t PyThreadState_frame;
  int64_t PyThreadState_thread;
  int64_t PyFrameObject_back;
  int64_t PyFrameObject_code;
  int64_t PyFrameObject_lineno;
  int64_t PyFrameObject_localsplus;
  int64_t PyCodeObject_filename;
  int64_t PyCodeObject_name;
  int64_t PyCodeObject_varnames;
  int64_t PyTupleObject_item;
  int64_t String_data;
  int64_t String_size;
} OffsetConfig;

typedef struct {
  uintptr_t current_state_addr; // virtual address of _PyThreadState_Current
  uintptr_t tls_key_addr; // virtual address of autoTLSkey for pthreads TLS
  uintptr_t gil_locked_addr; // virtual address of gil_locked
  uintptr_t gil_last_holder_addr; // virtual address of gil_last_holder
  OffsetConfig offsets;
} PidData;

typedef struct {
  char classname[CLASS_NAME_LEN];
  char name[FUNCTION_NAME_LEN];
  char file[FILE_NAME_LEN];
  // NOTE: PyFrameObject also has line number but it is typically just the
  // first line of that function and PyCode_Addr2Line needs to be called
  // to get the actual line
} Symbol;

typedef struct {
  uint32_t pid;
  uint32_t tid;
  char comm[TASK_COMM_LEN];
  uint8_t thread_state_match;
  uint8_t gil_state;
  uint8_t pthread_id_match;
  uint8_t stack_status;
  // instead of storing symbol name here directly, we add it to another
  // hashmap with Symbols and only store the ids here
  int64_t stack_len;
  int32_t stack[STACK_MAX_LEN];
} Event;

#define _STR_CONCAT(str1, str2) str1##str2
#define STR_CONCAT(str1, str2) _STR_CONCAT(str1, str2)
#define FAIL_COMPILATION_IF(condition)            \
  typedef struct {                                \
    char _condition_check[1 - 2 * !!(condition)]; \
  } STR_CONCAT(compile_time_condition_check, __COUNTER__);
// See comments in get_frame_data
FAIL_COMPILATION_IF(sizeof(Symbol) == sizeof(struct bpf_perf_event_value))

typedef struct {
  OffsetConfig offsets;
  uint64_t cur_cpu;
  int64_t symbol_counter;
  void* frame_ptr;
  int64_t python_stack_prog_call_cnt;
  Event event;
} sample_state_t;

BPF_PERCPU_ARRAY(state_heap, sample_state_t, 1);
BPF_HASH(symbols, Symbol, int32_t, __SYMBOLS_SIZE__);
BPF_HASH(pid_config, pid_t, PidData);
BPF_PROG_ARRAY(progs, 1);

BPF_PERF_OUTPUT(events);

static inline __attribute__((__always_inline__)) void* get_thread_state(
    void* tls_base,
    PidData* pid_data) {
  // Python sets the thread_state using pthread_setspecific with the key
  // stored in a global variable autoTLSkey.
  // We read the value of the key from the global variable and then read
  // the value in the thread-local storage. This relies on pthread implementation.
  // This is basically the same as running the following in GDB:
  //  p *(PyThreadState*)((struct pthread*)pthread_self())->
  //    specific_1stblock[autoTLSkey]->data
  int key;
  bpf_probe_read_user(&key, sizeof(key), (void*)pid_data->tls_key_addr);
  // This assumes autoTLSkey < 32, which means that the TLS is stored in
  //   pthread->specific_1stblock[autoTLSkey]
  // 0x310 is offsetof(struct pthread, specific_1stblock),
  // 0x10 is sizeof(pthread_key_data)
  // 0x8 is offsetof(struct pthread_key_data, data)
  // 'struct pthread' is not in the public API so we have to hardcode
  // the offsets here
  void* thread_state;
  bpf_probe_read_user(
      &thread_state,
      sizeof(thread_state),
      tls_base + 0x310 + key * 0x10 + 0x08);
  return thread_state;
}

static inline __attribute__((__always_inline__)) int submit_sample(
    struct pt_regs* ctx,
    sample_state_t* state) {
  events.perf_submit(ctx, &state->event, sizeof(Event));
  return 0;
}

// this function is trivial, but we need to do map lookup in separate function,
// because BCC doesn't allow direct map calls (including lookups) from inside
// a macro (which we want to do in GET_STATE() macro below)
static inline __attribute__((__always_inline__)) sample_state_t* get_state() {
  int zero = 0;
  return state_heap.lookup(&zero);
}

#define GET_STATE()                     \
  sample_state_t* state = get_state();  \
  if (!state) {                         \
    return 0; /* should never happen */ \
  }

static inline __attribute__((__always_inline__)) int get_thread_state_match(
    void* this_thread_state,
    void* global_thread_state) {
  if (this_thread_state == 0 && global_thread_state == 0) {
    return THREAD_STATE_BOTH_NULL;
  }
  if (this_thread_state == 0) {
    return THREAD_STATE_THIS_THREAD_NULL;
  }
  if (global_thread_state == 0) {
    return THREAD_STATE_GLOBAL_CURRENT_THREAD_NULL;
  }
  if (this_thread_state == global_thread_state) {
    return THREAD_STATE_MATCH;
  } else {
    return THREAD_STATE_MISMATCH;
  }
}

static inline __attribute__((__always_inline__)) int get_gil_state(
    void* this_thread_state,
    void* global_thread_state,
    PidData* pid_data) {
  // Get information of GIL state
  if (pid_data->gil_locked_addr == 0 || pid_data->gil_last_holder_addr == 0) {
    return GIL_STATE_NO_INFO;
  }

  int gil_locked = 0;
  void* gil_thread_state = 0;
  if (bpf_probe_read_user(
          &gil_locked, sizeof(gil_locked), (void*)pid_data->gil_locked_addr)) {
    return GIL_STATE_ERROR;
  }

  switch (gil_locked) {
    case -1:
      return GIL_STATE_UNINITIALIZED;
    case 0:
      return GIL_STATE_NOT_LOCKED;
    case 1:
      // GIL is held by some Thread
      bpf_probe_read_user(
          &gil_thread_state,
          sizeof(void*),
          (void*)pid_data->gil_last_holder_addr);
      if (gil_thread_state == this_thread_state) {
        return GIL_STATE_THIS_THREAD;
      } else if (gil_thread_state == global_thread_state) {
        return GIL_STATE_GLOBAL_CURRENT_THREAD;
      } else if (gil_thread_state == 0) {
        return GIL_STATE_NULL;
      } else {
        return GIL_STATE_OTHER_THREAD;
      }
    default:
      return GIL_STATE_ERROR;
  }
}

static inline __attribute__((__always_inline__)) int
get_pthread_id_match(void* thread_state, void* tls_base, PidData* pid_data) {
  if (thread_state == 0) {
    return PTHREAD_ID_THREAD_STATE_NULL;
  }

  uint64_t pthread_self, pthread_created;

  bpf_probe_read_user(
      &pthread_created,
      sizeof(pthread_created),
      thread_state + pid_data->offsets.PyThreadState_thread);
  if (pthread_created == 0) {
    return PTHREAD_ID_NULL;
  }

  // 0x10 = offsetof(struct pthread, header.self)
  bpf_probe_read_user(&pthread_self, sizeof(pthread_self), tls_base + 0x10);
  if (pthread_self == 0) {
    return PTHREAD_ID_ERROR;
  }

  if (pthread_self == pthread_created) {
    return PTHREAD_ID_MATCH;
  } else {
    return PTHREAD_ID_MISMATCH;
  }
}

int on_event(struct pt_regs* ctx) {
  uint64_t pid_tgid = bpf_get_current_pid_tgid();
  pid_t pid = (pid_t)(pid_tgid >> 32);
  PidData* pid_data = pid_config.lookup(&pid);
  if (!pid_data) {
    return 0;
  }

  GET_STATE();

  state->offsets = pid_data->offsets;
  state->cur_cpu = bpf_get_smp_processor_id();
  state->python_stack_prog_call_cnt = 0;

  Event* event = &state->event;
  event->pid = pid;
  event->tid = (pid_t)pid_tgid;
  bpf_get_current_comm(&event->comm, sizeof(event->comm));

  // Get pointer of global PyThreadState, which should belong to the Thread
  // currently holds the GIL
  void* global_current_thread = (void*)0;
  bpf_probe_read_user(
      &global_current_thread,
      sizeof(global_current_thread),
      (void*)pid_data->current_state_addr);

  struct task_struct* task = (struct task_struct*)bpf_get_current_task();
#if __x86_64__
// thread_struct->fs was renamed to fsbase in
// https://github.com/torvalds/linux/commit/296f781a4b7801ad9c1c0219f9e87b6c25e196fe
// so depending on kernel version, we need to account for that
#if LINUX_VERSION_CODE < KERNEL_VERSION(4, 7, 0)
  void* tls_base = (void*)task->thread.fs;
#else
  void* tls_base = (void*)task->thread.fsbase;
#endif
#elif __aarch64__
  void* tls_base = (void*)task->thread.tp_value;
#else
#error "Unsupported platform"
#endif

  // Read PyThreadState of this Thread from TLS
  void* thread_state = get_thread_state(tls_base, pid_data);

  // Check for matching between TLS PyThreadState and
  // the global _PyThreadState_Current
  event->thread_state_match =
      get_thread_state_match(thread_state, global_current_thread);

  // Read GIL state
  event->gil_state =
      get_gil_state(thread_state, global_current_thread, pid_data);

  // Check for matching between pthread ID created current PyThreadState and
  // pthread of actual current pthread
  event->pthread_id_match =
      get_pthread_id_match(thread_state, tls_base, pid_data);

  // pre-initialize event struct in case any subprogram below fails
  event->stack_status = STACK_STATUS_COMPLETE;
  event->stack_len = 0;

  if (thread_state != 0) {
    // Get pointer to top frame from PyThreadState
    bpf_probe_read_user(
        &state->frame_ptr,
        sizeof(void*),
        thread_state + pid_data->offsets.PyThreadState_frame);
    // jump to reading first set of Python frames
    progs.call(ctx, PYTHON_STACK_PROG_IDX);
    // we won't ever get here
  }

  return submit_sample(ctx, state);
}

static inline __attribute__((__always_inline__)) void get_names(
    void* cur_frame,
    void* code_ptr,
    OffsetConfig* offsets,
    Symbol* symbol,
    void* ctx) {
  // Figure out if we want to parse class name, basically checking the name of
  // the first argument,
  //   ((PyTupleObject*)$frame->f_code->co_varnames)->ob_item[0]
  // If it's 'self', we get the type and it's name, if it's cls, we just get
  // the name. This is not perfect but there is no better way to figure this
  // out from the code object.
  void* args_ptr;
  bpf_probe_read_user(
      &args_ptr, sizeof(void*), code_ptr + offsets->PyCodeObject_varnames);
  bpf_probe_read_user(
      &args_ptr, sizeof(void*), args_ptr + offsets->PyTupleObject_item);
  bpf_probe_read_user_str(
      &symbol->name, sizeof(symbol->name), args_ptr + offsets->String_data);

  // compare strings as ints to save instructions
  char self_str[4] = {'s', 'e', 'l', 'f'};
  char cls_str[4] = {'c', 'l', 's', '\0'};
  bool first_self = *(int32_t*)symbol->name == *(int32_t*)self_str;
  bool first_cls = *(int32_t*)symbol->name == *(int32_t*)cls_str;

  // We re-use the same Symbol instance across loop iterations, which means
  // we will have left-over data in the struct. Although this won't affect
  // correctness of the result because we have '\0' at end of the strings read,
  // it would affect effectiveness of the deduplication.
  // Helper bpf_perf_prog_read_value clears the buffer on error, so here we
  // (ab)use this behavior to clear the memory. It requires the size of Symbol
  // to be different from struct bpf_perf_event_value, which we check at
  // compilation time using the FAIL_COMPILATION_IF macro.
  bpf_perf_prog_read_value(ctx, symbol, sizeof(Symbol));

  // Read class name from $frame->f_localsplus[0]->ob_type->tp_name.
  if (first_self || first_cls) {
    void* ptr;
    bpf_probe_read_user(
        &ptr, sizeof(void*), cur_frame + offsets->PyFrameObject_localsplus);
    if (first_self) {
      // we are working with an instance, first we need to get type
      bpf_probe_read_user(&ptr, sizeof(void*), ptr + offsets->PyObject_type);
    }
    bpf_probe_read_user(&ptr, sizeof(void*), ptr + offsets->PyTypeObject_name);
    bpf_probe_read_user_str(&symbol->classname, sizeof(symbol->classname), ptr);
  }

  void* pystr_ptr;
  // read PyCodeObject's filename into symbol
  bpf_probe_read_user(
      &pystr_ptr, sizeof(void*), code_ptr + offsets->PyCodeObject_filename);
  bpf_probe_read_user_str(
      &symbol->file, sizeof(symbol->file), pystr_ptr + offsets->String_data);
  // read PyCodeObject's name into symbol
  bpf_probe_read_user(
      &pystr_ptr, sizeof(void*), code_ptr + offsets->PyCodeObject_name);
  bpf_probe_read_user_str(
      &symbol->name, sizeof(symbol->name), pystr_ptr + offsets->String_data);
}

// get_frame_data reads current PyFrameObject filename/name and updates
// stack_info->frame_ptr with pointer to next PyFrameObject
static inline __attribute__((__always_inline__)) bool get_frame_data(
    void** frame_ptr,
    OffsetConfig* offsets,
    Symbol* symbol,
    // ctx is only used to call helper to clear symbol, see documentation below
    void* ctx) {
  void* cur_frame = *frame_ptr;
  if (!cur_frame) {
    return false;
  }
  void* code_ptr;
  // read PyCodeObject first, if that fails, then no point reading next frame
  bpf_probe_read_user(
      &code_ptr, sizeof(void*), cur_frame + offsets->PyFrameObject_code);
  if (!code_ptr) {
    return false;
  }

  get_names(cur_frame, code_ptr, offsets, symbol, ctx);

  // read next PyFrameObject pointer, update in place
  bpf_probe_read_user(
      frame_ptr, sizeof(void*), cur_frame + offsets->PyFrameObject_back);

  return true;
}

// To avoid duplicate ids, every CPU needs to use different ids when inserting
// into the hashmap. NUM_CPUS is defined at PyPerf backend side and passed
// through CFlag.
static inline __attribute__((__always_inline__)) int64_t get_symbol_id(
    sample_state_t* state,
    Symbol* sym) {
  int32_t* symbol_id_ptr = symbols.lookup(sym);
  if (symbol_id_ptr) {
    return *symbol_id_ptr;
  }
  // the symbol is new, bump the counter
  int32_t symbol_id = state->symbol_counter * NUM_CPUS + state->cur_cpu;
  state->symbol_counter++;
  symbols.update(sym, &symbol_id);
  return symbol_id;
}

int read_python_stack(struct pt_regs* ctx) {
  GET_STATE();

  state->python_stack_prog_call_cnt++;
  Event* sample = &state->event;

  Symbol sym = {};
  bool last_res = false;
#pragma unroll
  for (int i = 0; i < PYTHON_STACK_FRAMES_PER_PROG; i++) {
    last_res = get_frame_data(&state->frame_ptr, &state->offsets, &sym, ctx);
    if (last_res) {
      uint32_t symbol_id = get_symbol_id(state, &sym);
      int64_t cur_len = sample->stack_len;
      if (cur_len >= 0 && cur_len < STACK_MAX_LEN) {
        sample->stack[cur_len] = symbol_id;
        sample->stack_len++;
      }
    }
  }

  if (!state->frame_ptr) {
    sample->stack_status = STACK_STATUS_COMPLETE;
  } else {
    if (!last_res) {
      sample->stack_status = STACK_STATUS_ERROR;
    } else {
      sample->stack_status = STACK_STATUS_TRUNCATED;
    }
  }

  if (sample->stack_status == STACK_STATUS_TRUNCATED &&
      state->python_stack_prog_call_cnt < PYTHON_STACK_PROG_CNT) {
    // read next batch of frames
    progs.call(ctx, PYTHON_STACK_PROG_IDX);
  }

  return submit_sample(ctx, state);
}
)";

}
}  // namespace ebpf