1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
#!/usr/bin/env python
#
# USAGE: test_usdt.py
#
# Copyright 2017 Facebook, Inc
# Licensed under the Apache License, Version 2.0 (the "License")
from __future__ import print_function
from bcc import BPF, USDT
from unittest import main, TestCase
from subprocess import Popen, PIPE
from tempfile import NamedTemporaryFile
import ctypes as ct
import inspect
import os
import signal
class TestUDST(TestCase):
def setUp(self):
# Application, minimum, to define three trace points
app_text = b"""
#include <unistd.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "folly/tracing/StaticTracepoint.h"
int main() {
char s[100];
int i, a = 200, b = 40;
for (i = 0; i < 100; i++) s[i] = (i & 7) + (i & 6);
uint64_t j = 0;
char s1[64];
const char* str = "str";
size_t len = strlen(str);
while (1) {
FOLLY_SDT(test, probe_point_1, s[7], b);
FOLLY_SDT(test, probe_point_3, a, b);
FOLLY_SDT(test, probe_point_1, s[4], a);
FOLLY_SDT(test, probe_point_2, 5, s[10]);
FOLLY_SDT(test, probe_point_3, s[4], s[7]);
memset(&s1, '\0', sizeof(s1));
strncpy(s1, str, len);
snprintf(s1 + len, sizeof(s1) - len, "%d", j);
FOLLY_SDT(test, probe_point_4, j++, &s1);
memset(&s1, '\0', sizeof(s1));
strncpy(s1, str, len);
snprintf(s1 + len, sizeof(s1) - len, "%d", j);
FOLLY_SDT(test, probe_point_5, &s1, j++);
sleep(1);
}
return 1;
}
"""
# BPF program
self.bpf_text = """
#include <linux/blkdev.h>
#include <uapi/linux/ptrace.h>
struct probe_result_t1 {
char v1;
int v2;
};
struct probe_result_t2 {
int v1;
char v2;
};
struct probe_result_t3 {
int v1;
int v2;
};
struct probe_result_t4 {
u64 v1;
char v2[8];
};
struct probe_result_t5 {
char v1[8];
u64 v2;
};
BPF_PERF_OUTPUT(event1);
BPF_PERF_OUTPUT(event2);
BPF_PERF_OUTPUT(event3);
BPF_PERF_OUTPUT(event4);
BPF_PERF_OUTPUT(event5);
int do_trace1(struct pt_regs *ctx) {
struct probe_result_t1 result = {};
bpf_usdt_readarg(1, ctx, &result.v1);
bpf_usdt_readarg(2, ctx, &result.v2);
event1.perf_submit(ctx, &result, sizeof(result));
return 0;
};
int do_trace2(struct pt_regs *ctx) {
struct probe_result_t2 result = {};
bpf_usdt_readarg(1, ctx, &result.v1);
bpf_usdt_readarg(2, ctx, &result.v2);
event2.perf_submit(ctx, &result, sizeof(result));
return 0;
}
int do_trace3(struct pt_regs *ctx) {
struct probe_result_t3 result = {};
bpf_usdt_readarg(1, ctx, &result.v1);
bpf_usdt_readarg(2, ctx, &result.v2);
event3.perf_submit(ctx, &result, sizeof(result));
return 0;
}
int do_trace4(struct pt_regs *ctx) {
struct probe_result_t4 result = {};
bpf_usdt_readarg(1, ctx, &result.v1);
bpf_usdt_readarg_p(2, ctx, &result.v2, sizeof(result.v2));
event4.perf_submit(ctx, &result, sizeof(result));
return 0;
}
int do_trace5(struct pt_regs *ctx) {
struct probe_result_t5 result = {};
bpf_usdt_readarg_p(1, ctx, &result.v1, sizeof(result.v1));
bpf_usdt_readarg(2, ctx, &result.v2);
event5.perf_submit(ctx, &result, sizeof(result));
return 0;
}
"""
# Compile and run the application
self.ftemp = NamedTemporaryFile(delete=False)
self.ftemp.close()
comp = Popen(["gcc", "-I", "%s/include" % os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))),
"-x", "c++", "-o", self.ftemp.name, "-"],
stdin=PIPE)
comp.stdin.write(app_text)
comp.stdin.close()
self.assertEqual(comp.wait(), 0)
self.app = Popen([self.ftemp.name])
def test_attach1(self):
# enable USDT probe from given PID and verifier generated BPF programs
u = USDT(pid=int(self.app.pid))
u.enable_probe(probe="probe_point_1", fn_name="do_trace1")
u.enable_probe(probe="probe_point_2", fn_name="do_trace2")
u.enable_probe(probe="probe_point_3", fn_name="do_trace3")
u.enable_probe(probe="probe_point_4", fn_name="do_trace4")
u.enable_probe(probe="probe_point_5", fn_name="do_trace5")
b = BPF(text=self.bpf_text, usdt_contexts=[u], debug=4)
# Event states for each event:
# 0 - probe not caught, 1 - probe caught with correct value,
# 2 - probe caught with incorrect value
self.evt_st_1 = 0
self.evt_st_2 = 0
self.evt_st_3 = 0
# define output data structure in Python
class Data1(ct.Structure):
_fields_ = [("v1", ct.c_char),
("v2", ct.c_int)]
class Data2(ct.Structure):
_fields_ = [("v1", ct.c_int),
("v2", ct.c_char)]
class Data3(ct.Structure):
_fields_ = [("v1", ct.c_int),
("v2", ct.c_int)]
class Data4(ct.Structure):
_fields_ = [("v1", ct.c_ulonglong),
("v2", ct.c_char * 64)]
class Data5(ct.Structure):
_fields_ = [("v1", ct.c_char * 64),
("v2", ct.c_ulonglong)]
def check_event_val(event, event_state, v1, v2, v3, v4):
if ((event.v1 == v1 and event.v2 == v2) or (event.v1 == v3 and event.v2 == v4)):
if (event_state == 0 or event_state == 1):
return 1
return 2
def print_event1(cpu, data, size):
event = ct.cast(data, ct.POINTER(Data1)).contents
self.evt_st_1 = check_event_val(event, self.evt_st_1, b'\x0d', 40, b'\x08', 200)
def print_event2(cpu, data, size):
event = ct.cast(data, ct.POINTER(Data2)).contents
# pretend we have two identical probe points to simplify the code
self.evt_st_2 = check_event_val(event, self.evt_st_2, 5, b'\x04', 5, b'\x04')
def print_event3(cpu, data, size):
event = ct.cast(data, ct.POINTER(Data3)).contents
self.evt_st_3 = check_event_val(event, self.evt_st_3, 200, 40, 8, 13)
def print_event4(cpu, data, size):
event = ct.cast(data, ct.POINTER(Data4)).contents
print("%s" % event.v2)
def print_event5(cpu, data, size):
event = ct.cast(data, ct.POINTER(Data5)).contents
print("%s" % event.v1)
# loop with callback to print_event
b["event1"].open_perf_buffer(print_event1)
b["event2"].open_perf_buffer(print_event2)
b["event3"].open_perf_buffer(print_event3)
b["event4"].open_perf_buffer(print_event4)
b["event5"].open_perf_buffer(print_event5)
# three iterations to make sure we get some probes and have time to process them
for i in range(3):
b.perf_buffer_poll()
self.assertTrue(self.evt_st_1 == 1 and self.evt_st_2 == 1 and self.evt_st_3 == 1)
def tearDown(self):
# kill the subprocess, clean the environment
self.app.kill()
self.app.wait()
os.unlink(self.ftemp.name)
if __name__ == "__main__":
main()
|