1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657
|
# bpftrace Standard Library
This includes builtins, functions, macros, and [map value functions](#map-value-functions).
The boundaries for the first three are blurred, by design, to allow for more flexible usage and are grouped below as "Helpers".
For example `pid` and `pid()` are equivalent; both yielding the process id.
Basically all functions or macros that don't have arguments or have default arguments can be invoked with or without the call syntax.
**async** helpers are asynchronous, which can lead to unexpected behaviour. See the [Invocation Mode](#invocation-mode) section for more information.
**compile time** helpers are evaluated at compile time, a static value will be compiled into the program.
**unsafe** helpers can have dangerous side effects and should be used with care, the `--unsafe` flag is required for use.
## Helpers
### assert
- `void assert(bool condition, string message)`
Simple assertion macro that will exit the entire script with an error code if the condition is not met.
### bswap
- `uint8 bswap(uint8 n)`
- `uint16 bswap(uint16 n)`
- `uint32 bswap(uint32 n)`
- `uint64 bswap(uint64 n)`
`bswap` reverses the order of the bytes in integer `n`. In case of 8 bit integers, `n` is returned without being modified.
The return type is an unsigned integer of the same width as `n`.
### buf
- `buffer buf(void * data, [int64 length])`
`buf` reads `length` amount of bytes from address `data`.
The maximum value of `length` is limited to the `BPFTRACE_MAX_STRLEN` variable.
For arrays the `length` is optional, it is automatically inferred from the signature.
`buf` is address space aware and will call the correct helper based on the address space associated with `data`.
The `buffer` object returned by `buf` can safely be printed as a hex encoded string with the `%r` format specifier.
Bytes with values >=32 and \<=126 are printed using their ASCII character, other bytes are printed in hex form (e.g. `\x00`). The `%rx` format specifier can be used to print everything in hex form, including ASCII characters. The similar `%rh` format specifier prints everything in hex form without `\x` and with spaces between bytes (e.g. `0a fe`).
```
interval:s:1 {
printf("%r\n", buf(kaddr("avenrun"), 8));
}
```
```
\x00\x03\x00\x00\x00\x00\x00\x00
\xc2\x02\x00\x00\x00\x00\x00\x00
```
### cat
- `void cat(string namefmt, [...args])`
**async**
Dump the contents of the named file to stdout.
`cat` supports the same format string and arguments that `printf` does.
If the file cannot be opened or read an error is printed to stderr.
```
tracepoint:syscalls:sys_enter_execve {
cat("/proc/%d/maps", pid);
}
```
```
55f683ebd000-55f683ec1000 r--p 00000000 08:01 1843399 /usr/bin/ls
55f683ec1000-55f683ed6000 r-xp 00004000 08:01 1843399 /usr/bin/ls
55f683ed6000-55f683edf000 r--p 00019000 08:01 1843399 /usr/bin/ls
55f683edf000-55f683ee2000 rw-p 00021000 08:01 1843399 /usr/bin/ls
55f683ee2000-55f683ee3000 rw-p 00000000 00:00 0
```
### cgroup
- `uint64 cgroup()`
- `uint64 cgroup`
ID of the cgroup the current process belongs to
Only works with cgroupv2
This utilizes the BPF helper `get_current_cgroup_id`
### cgroup_path
- `cgroup_path_t cgroup_path(int cgroupid, string filter)`
Convert cgroup id to cgroup path.
This is done asynchronously in userspace when the cgroup_path value is printed,
therefore it can resolve to a different value if the cgroup id gets reassigned.
This also means that the returned value can only be used for printing.
A string literal may be passed as an optional second argument to filter cgroup
hierarchies in which the cgroup id is looked up by a wildcard expression (cgroup2
is always represented by "unified", regardless of where it is mounted).
The currently mounted hierarchy at /sys/fs/cgroup is used to do the lookup. If
the cgroup with the given id isn’t present here (e.g. when running in a Docker
container), the cgroup path won’t be found (unlike when looking up the cgroup
path of a process via /proc/.../cgroup).
```
BEGIN {
$cgroup_path = cgroup_path(3436);
print($cgroup_path);
print($cgroup_path); /* This may print a different path */
printf("%s %s", $cgroup_path, $cgroup_path); /* This may print two different paths */
}
```
### cgroupid
- `uint64 cgroupid(const string path)`
**compile time**
`cgroupid` retrieves the cgroupv2 ID of the cgroup available at `path`.
```
BEGIN {
print(cgroupid("/sys/fs/cgroup/system.slice"));
}
```
### clear
- `void clear(map m)`
**async**
Clear all keys/values from map `m`.
```
interval:ms:100 {
@[rand % 10] = count();
}
interval:s:10 {
print(@);
clear(@);
}
```
### comm
- `string comm()`
- `string comm`
Name of the current thread
This utilizes the BPF helper `get_current_comm`
### cpid
- `uint32 cpid()`
- `uint32 cpid`
Child process ID, if bpftrace is invoked with `-c`
### cpu
- `uint32 cpu()`
- `uint32 cpu`
ID of the processor executing the BPF program
BPF program, in this case, is the probe body
This utilizes the BPF helper `raw_smp_processor_id`
### curtask
- `uint64 curtask()`
- `uint64 curtask`
Pointer to `struct task_struct` of the current task
This utilizes the BPF helper `get_current_task`
### delete
- `bool delete(map m, mapkey k)`
- deprecated `bool delete(mapkey k)`
Delete a single key from a map.
For scalar maps (e.g. no explicit keys), the key is omitted and is equivalent to calling `clear`.
For map keys that are composed of multiple values (e.g. `@mymap[3, "hello"] = 1` - remember these values are represented as a tuple) the syntax would be: `delete(@mymap, (3, "hello"));`
If deletion fails (e.g. the key doesn’t exist) the function returns false (0).
Additionally, if the return value for `delete` is discarded, and deletion fails, you will get a warning.
```
@a[1] = 1;
delete(@a, 1); // no warning (the key exists)
if (delete(@a, 2)) { // no warning (return value is used)
...
}
$did_delete = delete(@a, 2); // no warning (return value is used)
delete(@a, 2); // warning (return value is discarded and the key doesn’t exist)
```
The, now deprecated, API (supported in version <= 0.21.x) of passing map arguments with the key is still supported:
e.g. `delete(@mymap[3, "hello"]);`.
```
kprobe:dummy {
@scalar = 1;
delete(@scalar); // ok
@single["hello"] = 1;
delete(@single, "hello"); // ok
@associative[1,2] = 1;
delete(@associative, (1,2)); // ok
delete(@associative); // error
delete(@associative, 1); // error
// deprecated but ok
delete(@single["hello"]);
delete(@associative[1, 2]);
}
```
### elapsed
- `uint64 elapsed()`
- `uint64 elapsed`
ktime_get_ns - ktime_get_boot_ns
### errorf
- `void errorf(const string fmt, args...)`
**async**
`errorf()` formats and prints data (similar to [`printf`](#printf)) as an error message with the source location.
```
BEGIN { errorf("Something bad with args: %d, %s", 10, "arg2"); }
```
Prints:
```
EXPECT stdin:1:9-62: ERROR: Something bad with args: 10, arg2
```
### exit
- `void exit([int code])`
**async**
Terminate bpftrace, as if a `SIGTERM` was received.
The `END` probe will still trigger (if specified) and maps will be printed.
An optional exit code can be provided.
```
BEGIN {
exit();
}
```
Or
```
BEGIN {
exit(1);
}
```
### func
- `string func()`
- `string func`
Name of the current function being traced (kprobes,uprobes,fentry)
### getopt
- `bool getopt(string arg_name)`
- `string getopt(string arg_name, string default_value)`
- `int getopt(string arg_name, int default_value)`
- `bool getopt(string arg_name, bool default_value)`
Get the named command line argument/option e.g.
```
# bpftrace -e 'BEGIN { print(getopt("hello", 1)); }' -- --hello=5
```
`getopt` defines the type of the argument by the default value’s type.
If no default type is provided, the option is treated like a boolean arg e.g. `getopt("hello")` would evaluate to `false` if `--hello` is not specified on the command line or `true` if `--hello` is passed or set to one of the following values: `true`, `1`.
Additionally, boolean args accept the following false values: `0`, `false` e.g. `--hello=false`.
If the arg is not set on the command line, the default value is used.
```
# bpftrace -e 'BEGIN { print((getopt("aa", 10), getopt("bb", "hello"), getopt("cc"), getopt("dd", false))); }' -- --cc --bb=bye
```
### gid
- `uint64 gid()`
- `uint64 gid`
Group ID of the current thread, as seen from the init namespace
This utilizes the BPF helper `get_current_uid_gid`
### has_key
- `boolean has_key(map m, mapkey k)`
Return true (1) if the key exists in this map.
Otherwise return false (0).
Error if called with a map that has no keys (aka scalar map).
Return value can also be used for scratch variables and map keys/values.
```
kprobe:dummy {
@associative[1,2] = 1;
if (!has_key(@associative, (1,3))) { // ok
print(("bye"));
}
@scalar = 1;
if (has_key(@scalar)) { // error
print(("hello"));
}
$a = has_key(@associative, (1,2)); // ok
@b[has_key(@associative, (1,2))] = has_key(@associative, (1,2)); // ok
}
```
### jiffies
- `uint64 jiffies()`
- `uint64 jiffies`
Jiffies of the kernel
On 32-bit systems, using this builtin might be slower
This utilizes the BPF helper `get_jiffies_64`
### join
- `void join(char *arr[], [char * sep = ' '])`
**async**
`join` joins a char * `arr` with `sep` as separator into one string.
This string will be printed to stdout directly, it cannot be used as string value.
The concatenation of the array members is done in BPF and the printing happens in userspace.
```
tracepoint:syscalls:sys_enter_execve {
join(args.argv);
}
```
### kaddr
- `uint64 kaddr(const string name)`
**compile time**
Get the address of the kernel symbol `name`.
```
interval:s:1 {
$avenrun = kaddr("avenrun");
$load1 = *$avenrun;
}
```
You can find all kernel symbols at `/proc/kallsyms`.
### kptr
- `T * kptr(T * ptr)`
Marks `ptr` as a kernel address space pointer.
See the address-spaces section for more information on address-spaces.
The pointer type is left unchanged.
### kstack
- `kstack_t kstack([StackMode mode, ][int limit])`
These are implemented using BPF stack maps.
```
kprobe:ip_output { @[kstack()] = count(); }
/*
* Sample output:
* @[
* ip_output+1
* tcp_transmit_skb+1308
* tcp_write_xmit+482
* tcp_release_cb+225
* release_sock+64
* tcp_sendmsg+49
* sock_sendmsg+48
* sock_write_iter+135
* __vfs_write+247
* vfs_write+179
* sys_write+82
* entry_SYSCALL_64_fastpath+30
* ]: 1708
*/
```
Sampling only three frames from the stack (limit = 3):
```
kprobe:ip_output { @[kstack(3)] = count(); }
/*
* Sample output:
* @[
* ip_output+1
* tcp_transmit_skb+1308
* tcp_write_xmit+482
* ]: 1708
*/
```
You can also choose a different output format.
Available formats are `bpftrace`, `perf`, and `raw` (no symbolication):
```
kprobe:ip_output { @[kstack(perf, 3)] = count(); }
/*
* Sample output:
* @[
* ffffffffb4019501 do_mmap+1
* ffffffffb401700a sys_mmap_pgoff+266
* ffffffffb3e334eb sys_mmap+27
* ]: 1708
*/
```
### ksym
- `ksym_t ksym(uint64 addr)`
**async**
Retrieve the name of the function that contains address `addr`.
The address to name mapping happens in user-space.
The `ksym_t` type can be printed with the `%s` format specifier.
```
kprobe:do_nanosleep
{
printf("%s\n", ksym(reg("ip")));
}
/*
* Sample output:
* do_nanosleep
*/
```
### len
- `int64 len(map m)`
- `int64 len(ustack stack)`
- `int64 len(kstack stack)`
For maps, return the number of elements in the map.
For kstack/ustack, return the depth (measured in # of frames) of the call stack.
### macaddr
- `macaddr_t macaddr(char [6] mac)`
Create a buffer that holds a macaddress as read from `mac`
This buffer can be printed in the canonical string format using the `%s` format specifier.
```
kprobe:arp_create {
$stack_arg0 = *(uint8*)(reg("sp") + 8);
$stack_arg1 = *(uint8*)(reg("sp") + 16);
printf("SRC %s, DST %s\n", macaddr($stack_arg0), macaddr($stack_arg1));
}
/*
* Sample output:
* SRC 18:C0:4D:08:2E:BB, DST 74:83:C2:7F:8C:FF
*/
```
### ncpus
- `uint64 ncpus()`
- `uint64 ncpus`
Number of CPUs
### nsecs
- `timestamp nsecs([TimestampMode mode])`
- `nsecs(monotonic) - nanosecond timestamp since boot, exclusive of time the system spent suspended (CLOCK_MONOTONIC)`
- `nsecs(boot) - nanoseconds since boot, inclusive of time the system spent suspended (CLOCK_BOOTTIME)`
- `nsecs(tai) - TAI timestamp in nanoseconds (CLOCK_TAI)`
- `nsecs(sw_tai) - approximation of TAI timestamp in nanoseconds, is obtained through the "triple vdso sandwich" method. For older kernels without direct TAI timestamp access in BPF.`
Returns a timestamp in nanoseconds, as given by the requested kernel clock.
Defaults to `boot` if no clock is explicitly requested.
```
interval:s:1 {
$sw_tai1 = nsecs(sw_tai);
$tai = nsecs(tai);
$sw_tai2 = nsecs(sw_tai);
printf("sw_tai precision: %lldns\n", ($sw_tai1 + $sw_tai2)/2 - $tai);
}
/*
* Sample output:
* sw_tai precision: -98ns
* sw_tai precision: -99ns
* ...
*/
```
### ntop
- `inet ntop([int64 af, ] int addr)`
- `inet ntop([int64 af, ] char addr[4])`
- `inet ntop([int64 af, ] char addr[16])`
`ntop` returns the string representation of an IPv4 or IPv6 address.
`ntop` will infer the address type (IPv4 or IPv6) based on the `addr` type and size.
If an integer or `char[4]` is given, ntop assumes IPv4, if a `char[16]` is given, ntop assumes IPv6.
You can also pass the address type (e.g. AF_INET) explicitly as the first parameter.
### numaid
- `uint32 numaid()`
- `uint32 numaid`
ID of the NUMA node executing the BPF program
BPF program, in this case, is the probe body
This utilizes the BPF helper `numa_node_id`
### offsetof
- `uint64 offsetof(STRUCT, FIELD[.SUBFIELD])`
- `uint64 offsetof(EXPRESSION, FIELD[.SUBFIELD])`
**compile time**
Returns offset of the field offset bytes in struct.
Similar to kernel `offsetof` operator.
Support any number of sub field levels, for example:
```
struct Foo {
struct {
struct {
struct {
int d;
} c;
} b;
} a;
}
BEGIN {
@x = offsetof(struct Foo, a.b.c.d);
exit();
}
```
### override
- `void override(uint64 rc)`
**unsafe**
**Kernel** 4.16
This utilizes the BPF helper `bpf_override`
**Supported probes**
* kprobe
When using `override` the probed function will not be executed and instead `rc` will be returned.
```
kprobe:__x64_sys_getuid
/comm == "id"/ {
override(2<<21);
}
```
```
uid=4194304 gid=0(root) euid=0(root) groups=0(root)
```
This feature only works on kernels compiled with `CONFIG_BPF_KPROBE_OVERRIDE` and only works on functions tagged `ALLOW_ERROR_INJECTION`.
bpftrace does not test whether error injection is allowed for the probed function, instead if will fail to load the program into the kernel:
```
ioctl(PERF_EVENT_IOC_SET_BPF): Invalid argument
Error attaching probe: 'kprobe:vfs_read'
```
### path
- `char * path(struct path * path [, int32 size])`
**Kernel** 5.10
This utilizes the BPF helper `bpf_d_path`
Return full path referenced by struct path pointer in argument. If `size` is set,
the path will be clamped by `size` otherwise `BPFTRACE_MAX_STRLEN` is used.
If `size` is smaller than the resolved path, the resulting string will be truncated at the front rather than at the end.
This function can only be used by functions that are allowed to, these functions are contained in the `btf_allowlist_d_path` set in the kernel.
### percpu_kaddr
- `uint64 *percpu_kaddr(const string name)`
- `uint64 *percpu_kaddr(const string name, int cpu)`
**sync**
Get the address of the percpu kernel symbol `name` for CPU `cpu`. When `cpu` is
omitted, the current CPU is used.
```
interval:s:1 {
$proc_cnt = percpu_kaddr("process_counts");
printf("% processes are running on CPU %d\n", *$proc_cnt, cpu);
}
```
The second variant may return NULL if `cpu` is higher than the number of
available CPUs. Therefore, it is necessary to perform a NULL-check on the result
when accessing fields of the pointed structure, otherwise the BPF program will
be rejected.
```
interval:s:1 {
$runqueues = (struct rq *)percpu_kaddr("runqueues", 0);
if ($runqueues != 0) { // The check is mandatory here
print($runqueues->nr_running);
}
}
```
### pid
- `uint32 pid([curr_ns|init])`
- `uint32 pid`
Returns the process ID of the current thread.
Defaults to `curr_ns`.
* `pid(curr_ns)` - The process ID as seen from the PID namespace of bpftrace.
* `pid(init)` - The process ID as seen from the initial PID namespace.
### ppid
- `uint32 ppid(struct task_struct * task)`
Get the pid of the parent process
### print
- `void print(T val)`
**async**
### printf
- `void printf(const string fmt, args...)`
**async**
`printf()` formats and prints data.
It behaves similar to `printf()` found in `C` and many other languages.
The format string has to be a constant, it cannot be modified at runtime.
The formatting of the string happens in user space.
Values are copied and passed by value.
bpftrace supports all the typical format specifiers like `%llx` and `%hhu`.
The non-standard ones can be found in the table below:
| Specifier | Type | Description |
| --- | --- | --- |
| r | buffer | Hex-formatted string to print arbitrary binary content returned by the [buf](#buf) function. |
| rh | buffer | Prints in hex-formatted string without `\x` and with spaces between bytes (e.g. `0a fe`) |
`printf()` can also symbolize enums as strings. User defined enums as well as enums
defined in the kernel are supported. For example:
```
enum custom {
CUSTOM_ENUM = 3,
};
BEGIN {
$r = SKB_DROP_REASON_SOCKET_FILTER;
printf("%d, %s, %s\n", $r, $r, CUSTOM_ENUM);
exit();
}
```
yields:
```
6, SKB_DROP_REASON_SOCKET_FILTER, CUSTOM_ENUM
```
Colors are supported too, using standard terminal escape sequences:
```
print("\033[31mRed\t\033[33mYellow\033[0m\n")
```
### probe
- `string probe()`
- `string probe`
Name of the fully expanded probe
For example: `kprobe:do_nanosleep`
### pton
- `char addr[4] pton(const string *addr_v4)`
- `char addr[16] pton(const string *addr_v6)`
**compile time**
`pton` converts a text representation of an IPv4 or IPv6 address to byte array.
`pton` infers the address family based on `.` or `:` in the given argument.
`pton` comes in handy when we need to select packets with certain IP addresses.
### rand
- `uint32 rand()`
- `uint32 rand`
Get a pseudo random number
This utilizes the BPF helper `get_prandom_u32`
### reg
- `uint64 reg(const string name)`
**Supported probes**
* kprobe
* uprobe
Get the contents of the register identified by `name`.
Valid names depend on the CPU architecture.
### retval
- `uint64 retval()`
- `uint64 retval`
Value returned by the function being traced
(kretprobe, uretprobe, fexit)
For kretprobe and uretprobe, its type is uint64, but for fexit it depends. You can look up the type using `bpftrace -lv`
### signal
- `void signal(const string sig)`
- `void signal(uint32 signum)`
**unsafe**
**Kernel** 5.3
This utilizes the BPF helper `bpf_send_signal`
Probe types: k(ret)probe, u(ret)probe, USDT, profile
Send a signal to the process being traced.
The signal can either be identified by name, e.g. `SIGSTOP` or by ID, e.g. `19` as found in `kill -l`.
```
kprobe:__x64_sys_execve
/comm == "bash"/ {
signal(5);
}
```
```
$ ls
Trace/breakpoint trap (core dumped)
```
### sizeof
- `uint64 sizeof(TYPE)`
- `uint64 sizeof(EXPRESSION)`
**compile time**
Returns size of the argument in bytes.
Similar to C/C++ `sizeof` operator.
Note that the expression does not get evaluated.
### skboutput
- `uint32 skboutput(const string path, struct sk_buff *skb, uint64 length, const uint64 offset)`
**Kernel** 5.5
This utilizes the BPF helper `bpf_skb_output`
Write sk_buff `skb` 's data section to a PCAP file in the `path`, starting from `offset` to `offset` + `length`.
The PCAP file is encapsulated in RAW IP, so no ethernet header is included.
The `data` section in the struct `skb` may contain ethernet header in some kernel contexts, you may set `offset` to 14 bytes to exclude ethernet header.
Each packet’s timestamp is determined by adding `nsecs` and boot time, the accuracy varies on different kernels, see `nsecs`.
This function returns 0 on success, or a negative error in case of failure.
Environment variable `BPFTRACE_PERF_RB_PAGES` should be increased in order to capture large packets, or else these packets will be dropped.
Usage
```
# cat dump.bt
fentry:napi_gro_receive {
$ret = skboutput("receive.pcap", args.skb, args.skb->len, 0);
}
fentry:dev_queue_xmit {
// setting offset to 14, to exclude ethernet header
$ret = skboutput("output.pcap", args.skb, args.skb->len, 14);
printf("skboutput returns %d\n", $ret);
}
# export BPFTRACE_PERF_RB_PAGES=1024
# bpftrace dump.bt
...
# tcpdump -n -r ./receive.pcap | head -3
reading from file ./receive.pcap, link-type RAW (Raw IP)
dropped privs to tcpdump
10:23:44.674087 IP 22.128.74.231.63175 > 192.168.0.23.22: Flags [.], ack 3513221061, win 14009, options [nop,nop,TS val 721277750 ecr 3115333619], length 0
10:23:45.823194 IP 100.101.2.146.53 > 192.168.0.23.46619: 17273 0/1/0 (130)
10:23:45.823229 IP 100.101.2.146.53 > 192.168.0.23.46158: 45799 1/0/0 A 100.100.45.106 (60)
```
### socket_cookie
- `uint64 socket_cookie(struct sock *sk)`
This utilizes the BPF helper `bpf_get_socket_cookie`
Retrieve the cookie (generated by the kernel) of the socket.
If no cookie has been set yet, generate a new cookie. Once generated, the socket cookie remains stable for the life of the socket.
This function returns a `uint64` unique number on success, or 0 if **sk** is NULL.
```
fentry:tcp_rcv_established
{
$cookie = socket_cookie(args->sk);
@psize[$cookie] = hist(args->skb->len);
}
```
Prints:
```
@psize[65551]:
[32, 64) 4 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
@psize[504]:
[32, 64) 4 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[64, 128) 1 |@@@@@@@@@@@@@ |
[128, 256) 0 | |
[256, 512) 1 |@@@@@@@@@@@@@ |
[512, 1K) 0 | |
[1K, 2K) 0 | |
[2K, 4K) 1 |@@@@@@@@@@@@@ |
```
### str
- `string str(char * data [, uint32 length)`
This utilizes the BPF helpers `probe_read_str, probe_read_{kernel,user}_str`
`str` reads a NULL terminated (`\0`) string from `data`.
The maximum string length is limited by the `BPFTRACE_MAX_STRLEN` env variable, unless `length` is specified and shorter than the maximum.
In case the string is longer than the specified length only `length - 1` bytes are copied and a NULL byte is appended at the end.
When available (starting from kernel 5.5, see the `--info` flag) bpftrace will automatically use the `kernel` or `user` variant of `probe_read_{kernel,user}_str` based on the address space of `data`, see [Address-spaces](./language.md#address-spaces) for more information.
### strcontains
- `int64 strcontains(const char *haystack, const char *needle)`
`strcontains` compares whether the string haystack contains the string needle.
If needle is contained `1` is returned, else zero is returned.
bpftrace doesn’t read past the length of the shortest string.
### strerror
- `strerror_t strerror(int error)`
Convert errno code to string.
This is done asynchronously in userspace when the strerror value is printed, hence the returned value can only be used for printing.
```
#include <errno.h>
BEGIN {
print(strerror(EPERM));
}
```
### strftime
- `timestamp strftime(const string fmt, int64 timestamp_ns)`
**async**
Format the nanoseconds since boot timestamp `timestamp_ns` according to the format specified by `fmt`.
The time conversion and formatting happens in user space, therefore the `timestamp` value returned can only be used for printing using the `%s` format specifier.
bpftrace uses the `strftime(3)` function for formatting time and supports the same format specifiers.
```
interval:s:1 {
printf("%s\n", strftime("%H:%M:%S", nsecs));
}
```
bpftrace also supports the following format string extensions:
| Specifier | Description |
| --- | --- |
| `%f` | Microsecond as a decimal number, zero-padded on the left |
### strncmp
- `int64 strncmp(char * s1, char * s2, int64 n)`
`strncmp` compares up to `n` characters string `s1` and string `s2`.
If they’re equal `0` is returned, else a non-zero value is returned.
bpftrace doesn’t read past the length of the shortest string.
The use of the `==` and `!=` operators is recommended over calling `strncmp` directly.
### system
- `void system(string namefmt [, ...args])`
**unsafe**
**async**
`system` lets bpftrace run the specified command (`fork` and `exec`) until it completes and print its stdout.
The `command` is run with the same privileges as bpftrace and it blocks execution of the processing threads which can lead to missed events and delays processing of async events.
```
interval:s:1 {
time("%H:%M:%S: ");
printf("%d\n", @++);
}
interval:s:10 {
system("/bin/sleep 10");
}
interval:s:30 {
exit();
}
```
Note how the async `time` and `printf` first print every second until the `interval:s:10` probe hits, then they print every 10 seconds due to bpftrace blocking on `sleep`.
```
Attached 3 probes
08:50:37: 0
08:50:38: 1
08:50:39: 2
08:50:40: 3
08:50:41: 4
08:50:42: 5
08:50:43: 6
08:50:44: 7
08:50:45: 8
08:50:46: 9
08:50:56: 10
08:50:56: 11
08:50:56: 12
08:50:56: 13
08:50:56: 14
08:50:56: 15
08:50:56: 16
08:50:56: 17
08:50:56: 18
08:50:56: 19
```
`system` supports the same format string and arguments that `printf` does.
```
tracepoint:syscalls:sys_enter_execve {
system("/bin/grep %s /proc/%d/status", "vmswap", pid);
}
```
### tid
- `uint32 tid([curr_ns|init])`
- `uint32 tid`
Returns the thread ID of the current thread.
Defaults to `curr_ns`.
* `tid(curr_ns)` - The thread ID as seen from the PID namespace of bpftrace.
* `tid(init)` - The thread ID as seen from the initial PID namespace.
### time
- `void time(const string fmt)`
**async**
Format the current wall time according to the format specifier `fmt` and print it to stdout.
Unlike `strftime()` `time()` doesn’t send a timestamp from the probe, instead it is the time at which user-space processes the event.
bpftrace uses the `strftime(3)` function for formatting time and supports the same format specifiers.
### uaddr
- `T * uaddr(const string sym)`
**Supported probes**
* uprobes
* uretprobes
* USDT
***Does not work with ASLR, see issue [#75](https://github.com/bpftrace/bpftrace/issues/75)***
The `uaddr` function returns the address of the specified symbol.
This lookup happens during program compilation and cannot be used dynamically.
The default return type is `uint64*`.
If the ELF object size matches a known integer size (1, 2, 4 or 8 bytes) the return type is modified to match the width (`uint8*`, `uint16*`, `uint32*` or `uint64*` resp.).
As ELF does not contain type info the type is always assumed to be unsigned.
```
uprobe:/bin/bash:readline {
printf("PS1: %s\n", str(*uaddr("ps1_prompt")));
}
```
### uid
- `uint64 uid()`
- `uint64 uid`
User ID of the current thread, as seen from the init namespace
This utilizes the BPF helper `get_current_uid_gid`
### unwatch
- `void unwatch(void * addr)`
**async**
Removes a watchpoint
### uptr
- `T * uptr(T * ptr)`
Marks `ptr` as a user address space pointer.
See the address-spaces section for more information on address-spaces.
The pointer type is left unchanged.
### usermode
- `uint8 usermode()`
- `uint8 usermode`
Returns 1 if the current process is in user mode, 0 otherwise
Currently only available on x86_64.
### username
- `string username()`
- `string username`
Get the current username
Often this is just "root"
### ustack
- `ustack_t ustack([StackMode mode, ][int limit])`
These are implemented using BPF stack maps.
```
kprobe:do_sys_open /comm == "bash"/ { @[ustack()] = count(); }
/*
* Sample output:
* @[
* __open_nocancel+65
* command_word_completion_function+3604
* rl_completion_matches+370
* bash_default_completion+540
* attempt_shell_completion+2092
* gen_completion_matches+82
* rl_complete_internal+288
* rl_complete+145
* _rl_dispatch_subseq+647
* _rl_dispatch+44
* readline_internal_char+479
* readline_internal_charloop+22
* readline_internal+23
* readline+91
* yy_readline_get+152
* yy_readline_get+429
* yy_getc+13
* shell_getc+469
* read_token+251
* yylex+192
* yyparse+777
* parse_command+126
* read_command+207
* reader_loop+391
* main+2409
* __libc_start_main+231
* 0x61ce258d4c544155
* ]: 9
*/
```
Sampling only three frames from the stack (limit = 3):
```
kprobe:ip_output { @[ustack(3)] = count(); }
/*
* Sample output:
* @[
* __open_nocancel+65
* command_word_completion_function+3604
* rl_completion_matches+370
* ]: 20
*/
```
You can also choose a different output format.
Available formats are `bpftrace`, `perf`, and `raw` (no symbolication):
```
kprobe:ip_output { @[ustack(perf, 3)] = count(); }
/*
* Sample output:
* @[
* 5649feec4090 readline+0 (/home/mmarchini/bash/bash/bash)
* 5649fee2bfa6 yy_readline_get+451 (/home/mmarchini/bash/bash/bash)
* 5649fee2bdc6 yy_getc+13 (/home/mmarchini/bash/bash/bash)
* ]: 20
*/
```
Note that for these examples to work, bash had to be recompiled with frame pointers.
### usym
- `usym_t usym(uint64 * addr)`
**async**
**Supported probes**
* uprobes
* uretprobes
Equal to [ksym](#ksym) but resolves user space symbols.
If ASLR is enabled, user space symbolication only works when the process is running at either the time of the symbol resolution or the time of the probe attachment. The latter requires `BPFTRACE_CACHE_USER_SYMBOLS` to be set to `PER_PID`, and might not work with older versions of BCC. A similar limitation also applies to dynamically loaded symbols.
```
uprobe:/bin/bash:readline
{
printf("%s\n", usym(reg("ip")));
}
/*
* Sample output:
* readline
*/
```
### zero
- `void zero(map m)`
**async**
Set all values (for all keys) in the map to zero.
## Map Value Functions
Map value functions can only be assigned to maps (when scalar) or map keys.
The data types associated with these functions are only for internal use but many can be cast to integers (e.g. `count_t` and `sum_t`).
### avg
* `avg_t avg(int64 n)`
Calculate the running average of `n` between consecutive calls.
```
interval:s:1 {
@x++;
@y = avg(@x);
print(@x);
print(@y);
}
```
Internally this keeps two values in the map: value count and running total.
The average is computed in user-space when printing by dividing the total by the
count. However, you can get the average in kernel space in expressions like
`if (@y == 5)` but this is expensive as bpftrace needs to iterate over all the
cpus to collect and sum BOTH count and total.
### count
* `count_t count()`
Count how often this function is called.
Using `@=count()` is conceptually similar to `@++`.
The difference is that the `count()` function uses a map type optimized for
performance and correctness using cheap, thread-safe writes ([PERCPU](./language.md#percpu-types)). However, sync reads
can be expensive as bpftrace needs to iterate over all the cpus to collect and
sum these values.
Note: This differs from "raw" writes (e.g. `@++`) where multiple writers to a
shared location might lose updates, as bpftrace does not generate any atomic instructions
for `++`.
Example one:
```
BEGIN {
@ = count();
@ = count();
printf("%d\n", (int64)@); // prints 2
exit();
}
```
Example two:
```
interval:ms:100 {
@ = count();
}
interval:s:10 {
// async read
print(@);
// sync read
if (@ > 10) {
print(("hello"));
}
clear(@);
}
```
### hist
* `hist_t hist(int64 n[, int k])`
Create a log2 histogram of `n` using $2^k$ buckets per power of 2,
0 <= k <= 5, defaults to 0.
```
kretprobe:vfs_read {
@bytes = hist(retval);
}
```
Prints:
```
@:
[1M, 2M) 3 | |
[2M, 4M) 2 | |
[4M, 8M) 2 | |
[8M, 16M) 6 | |
[16M, 32M) 16 | |
[32M, 64M) 27 | |
[64M, 128M) 48 |@ |
[128M, 256M) 98 |@@@ |
[256M, 512M) 191 |@@@@@@ |
[512M, 1G) 394 |@@@@@@@@@@@@@ |
[1G, 2G) 820 |@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
```
### lhist
* `lhist_t lhist(int64 n, int64 min, int64 max, int64 step)`
Create a linear histogram of `n`.
`lhist` creates `M` (`(max - min) / step`) buckets in the range `[min,max)` where each bucket is `step` in size.
Values in the range `(-inf, min)` and `(max, inf)` get their get their own bucket too, bringing the total amount of buckets created to `M+2`.
```
interval:ms:1 {
@ = lhist(rand %10, 0, 10, 1);
}
interval:s:5 {
exit();
}
```
Prints:
```
@:
[0, 1) 306 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[1, 2) 284 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[2, 3) 294 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[3, 4) 318 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[4, 5) 311 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[5, 6) 362 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@|
[6, 7) 336 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[7, 8) 326 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[8, 9) 328 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
[9, 10) 318 |@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@ |
```
### max
* `max_t max(int64 n)`
Update the map with `n` if `n` is bigger than the current value held.
Similar to `count` this uses a [PERCPU](./language.md#percpu-types) map (thread-safe, fast writes, slow reads).
Note: this is different than the typical userspace `max()` in that bpftrace’s `max()`
only takes a single argument. The logical "other" argument to compare to is the value
in the map the "result" is being assigned to.
For example, compare the two logically equivalent samples (C++ vs bpftrace):
In C++:
```
int x = std::max(3, 33); // x contains 33
```
In bpftrace:
```
@x = max(3);
@x = max(33); // @x contains 33
```
Also note that bpftrace takes care to handle the unset case. In other words,
there is no default value. The first value you pass to `max()` will always
be returned.
### min
* `min_t min(int64 n)`
Update the map with `n` if `n` is smaller than the current value held.
Similar to `count` this uses a [PERCPU](./language.md#percpu-types) map (thread-safe, fast writes, slow reads).
See `max()` above for how this differs from the typical userspace `min()`.
### stats
* `stats_t stats(int64 n)`
`stats` combines the `count`, `avg` and `sum` calls into one.
```
kprobe:vfs_read {
@bytes[comm] = stats(arg2);
}
```
```
@bytes[bash]: count 7, average 1, total 7
@bytes[sleep]: count 5, average 832, total 4160
@bytes[ls]: count 7, average 886, total 6208
@
```
### sum
* `sum_t sum(int64 n)`
Calculate the sum of all `n` passed.
Using `@=sum(5)` is conceptually similar to `@+=5`.
The difference is that the `sum()` function uses a map type optimized for
performance and correctness using cheap, thread-safe writes ([PERCPU](./language.md#percpu-types)). However, sync reads
can be expensive as bpftrace needs to iterate over all the cpus to collect and
sum these values.
Note: This differs from "raw" writes (e.g. `@+=5`) where multiple writers to a
shared location might lose updates, as bpftrace does not generate any implicit
atomic operations.
Example one:
```
BEGIN {
@ = sum(5);
@ = sum(6);
printf("%d\n", (int64)@); // prints 11
clear(@);
exit();
}
```
Example two:
```
interval:ms:100 {
@ = sum(5);
}
interval:s:10 {
// async read
print(@);
// sync read
if (@ > 10) {
print(("hello"));
}
clear(@);
}
```
### tseries
* `tseries_t tseries(int64 n, int64 interval_ns, int64 num_intervals)`
* `tseries_t tseries(int64 n, int64 interval_ns, int64 num_intervals, const string agg)`
Create a time series that tracks an integer value. `tseries` records up to
`num_intervals` intervals representing `interval_ns` nanoseconds.
#### Durations
`interval_ns` is an unsigned integer that specifies the interval duration. You
may use numbers with duration suffixes to improve readability:
```
@a = tseries(1, 100ns, 5); // 100 nanoseconds
@b = tseries(1, 100us, 5); // 100 microseconds
@c = tseries(1, 100ms, 5); // 100 milliseconds
@d = tseries(1, 1s, 5); // 1 second
```
#### Aggregation Functions
By default, each interval in `tseries` contains the last value recorded in that
interval. The optional `agg` parameter specifies how values in the same interval
are aggregated.
| Aggregation Function | Example | Description |
| --- | --- | --- |
| `avg` | `@ = tseries(@v, 1s, 5, "avg")` | Calculate the running average of all the values in each interval. |
| `max` | `@ = tseries(@v, 1s, 5, "max")` | Calculate the maximum of all values in each interval. |
| `min` | `@ = tseries(@v, 1s, 5, "min")` | Calculate the minimum of all values in each interval. |
| `sum` | `@ = tseries(@v, 1s, 5, "sum")` | Calculate the sum of all values in each interval. |
#### Examples
Example one:
```
// Record the minimum of ten random values generated during each 100ms interval.
i:ms:10 {
@ = tseries(rand % 10, 100ms, 20, "min");
}
```
```
Attached 2 probes
@:
0 2
hh:mm:ss.ms |___________________________________________________|
10:41:46.700 * | 0
10:41:46.800 * | 0
10:41:46.900 | * | 1
10:41:47.000 | * 2
10:41:47.100 | * | 1
10:41:47.200 * | 0
10:41:47.300 | * | 1
10:41:47.400 * | 0
10:41:47.500 | * | 1
10:41:47.600 * | 0
10:41:47.700 | * 2
10:41:47.800 * | 0
10:41:47.900 * | 0
10:41:48.000 | * | 1
10:41:48.100 | * | 1
10:41:48.200 | * | 1
10:41:48.300 * | 0
10:41:48.400 | * 2
10:41:48.500 | * | 1
10:41:48.600 | * | 1
v___________________________________________________v
0 2
```
Example two:
```
// Create a zigzag pattern
BEGIN {
@dir = 1;
@c = -5;
}
i:ms:100 {
@ = tseries(@c, 100ms, 20);
@c += @dir;
if (@c > 5) {
@dir = -1;
@c = 4
} else if (@c < -5) {
@dir = 1;
@c = -4;
}
}
```
```
Attached 2 probes
@:
-5 5
hh:mm:ss.ms |___________________________________________________|
10:39:49.300 * . | -5
10:39:49.400 | * . | -4
10:39:49.500 | * . | -3
10:39:49.600 | * . | -2
10:39:49.700 | * . | -1
10:39:49.800 | * | 0
10:39:49.900 | . * | 1
10:39:50.000 | . * | 2
10:39:50.100 | . * | 3
10:39:50.200 | . * | 4
10:39:50.300 | . * 5
10:39:50.400 | . * | 4
10:39:50.500 | . * | 3
10:39:50.600 | . * | 2
10:39:50.700 | . * | 1
10:39:50.800 | * | 0
10:39:50.900 | * . | -1
10:39:51.000 | * . | -2
10:39:51.100 | * . | -3
10:39:51.200 | * . | -4
v___________________________________________________v
-5 5
```
## Invocation Mode
There are three invocation modes for bpftrace built-in functions.
| | | |
| --- | --- | --- |
| Mode | Description | Example functions |
| Synchronous | The value/effect of the built-in function is determined/handled right away by the bpf program in the kernel space. | `reg(), str(), ntop()` |
| Asynchronous | The value/effect of the built-in function is determined/handled later by the bpftrace process in the user space. | `printf(), clear(), exit()` |
| Compile-time | The value of the built-in function is determined before bpf programs are running. | `kaddr(), cgroupid(), offsetof()` |
While BPF in the kernel can do a lot there are still things that can only be done from user space, like the outputting (printing) of data.
The way bpftrace handles this is by sending events from the BPF program which user-space will pick up some time in the future (usually in milliseconds).
Operations that happen in the kernel are 'synchronous' ('sync') and those that are handled in user space are 'asynchronous' ('async')
The asynchronous behaviour can lead to some unexpected behavior as updates can happen before user space had time to process the event. The following situations may occur:
* event loss: when using printf(), the amount of data printed may be less than the actual number of events generated by the kernel during BPF program’s execution.
* delayed exit: when using the exit() to terminate the program, bpftrace needs to handle the exit signal asynchronously causing the BPF program may continue to run for some additional time.
One example is updating a map value in a tight loop:
```
BEGIN {
@=0;
unroll(10) {
print(@);
@++;
}
exit()
}
```
Maps are printed by reference not by value and as the value gets updated right after the print user-space will likely only see the final value once it processes the event:
```
@: 10
@: 10
@: 10
@: 10
@: 10
@: 10
@: 10
@: 10
@: 10
@: 10
```
Therefore, when you need precise event statistics, it is recommended to use synchronous functions (e.g. count() and hist()) to ensure more reliable and accurate results.
|