File: SeqGen.bpp

package info (click to toggle)
bppsuite 2.4.1-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,116 kB
  • sloc: cpp: 3,867; sh: 65; makefile: 5
file content (56 lines) | stat: -rw-r--r-- 1,809 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# The alphabet to use:
# DNA, RNA or Protein
alphabet = DNA

# Input tree to use:
input.tree.file = ../../Data/LSUrooted.dnd
input.tree.format=Newick

# Print a tree with ids as bootstrap values.
# This is helpful when setting up complexe non-homogeneous models.
# Setting this option will cause the program to exit after printing the tree.
//output.tree.path = LSUrooted_wid.dnd

# Number of sites to simulate:
number_of_sites = 300

# The output file:
output.sequence.file = LSUSim.fasta
# The alignment format:
# Must be one of Mase, Fasta, Phylip
output.sequence.format = Fasta()

# ----------------------------------------------------------------------------------------
#                                     Model specification
# ----------------------------------------------------------------------------------------

# Homogeneous model?
# no => Homogeneous case
# general => Specify the model by hand.
nonhomogeneous = general

# How to deal with root frequencies:
# balanced  : all frequencies are set to 1/size of the alphabet
# observed  : use observed counts in the data set
# init      : manually set the frequencies (they have to sum to one)
# For nucleotides, one can use the GC rate (theta) parametrization, like in the T92 model:
# balancedGC: ancestral GC set to 0.5
# observedGC: use observed GC content
# initGC    : manually set the ancestral GC content.
nonhomogeneous.root_freq = GC(theta=0.9)

# Now the general heterogeneous case:
# Specify the number of distincts models.
nonhomogeneous.number_of_models = 2
# Set up each model:
model1=T92(kappa=2, theta=0.1)
model1.nodes_id=0:62 # The Ids of the nodes to which this model should be assigned.

model2=T92(kappa=1, theta=0.9)
model2.nodes_id=63:155

#etc

# Rate Across Sites variation
rate_distribution = Gamma(n=4, alpha=0.358)