File: bppAncestor.cpp

package info (click to toggle)
bppsuite 2.4.1-8
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,116 kB
  • sloc: cpp: 3,867; sh: 65; makefile: 5
file content (520 lines) | stat: -rw-r--r-- 21,092 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
//
// File: bppAncestor.cpp
// Created by: Julien Dutheil
// Created on: Sep Wed 10 14:14 2008
//

/*
Copyright or © or Copr. Bio++ Development Team

This software is a computer program whose purpose is to estimate
phylogenies and evolutionary parameters from a dataset according to
the maximum likelihood principle.

This software is governed by the CeCILL  license under French law and
abiding by the rules of distribution of free software.  You can  use, 
modify and/ or redistribute the software under the terms of the CeCILL
license as circulated by CEA, CNRS and INRIA at the following URL
"http://www.cecill.info". 

As a counterpart to the access to the source code and  rights to copy,
modify and redistribute granted by the license, users are provided only
with a limited warranty  and the software's author,  the holder of the
economic rights,  and the successive licensors  have only  limited
liability. 

In this respect, the user's attention is drawn to the risks associated
with loading,  using,  modifying and/or developing or reproducing the
software by the user in light of its specific status of free software,
that may mean  that it is complicated to manipulate,  and  that  also
therefore means  that it is reserved for developers  and  experienced
professionals having in-depth computer knowledge. Users are therefore
encouraged to load and test the software's suitability as regards their
requirements in conditions enabling the security of their systems and/or 
data to be ensured and,  more generally, to use and operate it in the 
same conditions as regards security. 

The fact that you are presently reading this means that you have had
knowledge of the CeCILL license and that you accept its terms.
*/

// From the STL:
#include <iostream>
#include <iomanip>

using namespace std;

// From bpp-core:
#include <Bpp/Version.h>
#include <Bpp/App/BppApplication.h>
#include <Bpp/App/ApplicationTools.h>
#include <Bpp/Io/FileTools.h>
#include <Bpp/Text/TextTools.h>
#include <Bpp/Numeric/Prob/DiscreteDistribution.h>
#include <Bpp/Numeric/Prob/ConstantDistribution.h>
#include <Bpp/Numeric/DataTable.h>
#include <Bpp/Numeric/Matrix/MatrixTools.h>
#include <Bpp/Numeric/VectorTools.h>
#include <Bpp/Numeric/AutoParameter.h>

// From bpp-seq:
#include <Bpp/Seq/SiteTools.h>
#include <Bpp/Seq/Alphabet/Alphabet.h>
#include <Bpp/Seq/Container/VectorSiteContainer.h>
#include <Bpp/Seq/Container/SequenceContainerTools.h>
#include <Bpp/Seq/Container/SiteContainerTools.h>
#include <Bpp/Seq/App/SequenceApplicationTools.h>

// From bpp-phyl:
#include <Bpp/Phyl/Tree.h>
#include <Bpp/Phyl/Likelihood/DRNonHomogeneousTreeLikelihood.h>
#include <Bpp/Phyl/Likelihood/DRHomogeneousMixedTreeLikelihood.h>
#include <Bpp/Phyl/Likelihood/RASTools.h>
#include <Bpp/Phyl/Likelihood/MarginalAncestralStateReconstruction.h>
#include <Bpp/Phyl/Likelihood/TreeLikelihoodTools.h>
#include <Bpp/Phyl/Likelihood/DRTreeLikelihoodTools.h>
#include <Bpp/Phyl/PatternTools.h>
#include <Bpp/Phyl/App/PhylogeneticsApplicationTools.h>
#include <Bpp/Phyl/OptimizationTools.h>
#include <Bpp/Phyl/Model/MarkovModulatedSubstitutionModel.h>
#include <Bpp/Phyl/Model/MixedSubstitutionModel.h>
#include <Bpp/Phyl/Model/SubstitutionModelSet.h>
#include <Bpp/Phyl/Model/SubstitutionModelSetTools.h>
#include <Bpp/Phyl/Model/RateDistribution/ConstantRateDistribution.h>
#include <Bpp/Phyl/Io/Newick.h>

using namespace bpp;

/******************************************************************************/

void help()
{
  (*ApplicationTools::message << "__________________________________________________________________________").endLine();
  (*ApplicationTools::message << "bppancestor parameter1_name=parameter1_value ").endLine();
  (*ApplicationTools::message << "      parameter2_name=parameter2_value ... param=option_file").endLine();
  (*ApplicationTools::message).endLine();
  (*ApplicationTools::message << "  Refer to the Bio++ Program Suite Manual for a list of available options.").endLine();
  (*ApplicationTools::message << "__________________________________________________________________________").endLine();
}

int main(int args, char ** argv)
{
  cout << "******************************************************************" << endl;
  cout << "*     Bio++ Ancestral Sequence Reconstruction, version " << BPP_VERSION << "     *" << endl;
  cout << "* Authors: J. Dutheil                       Created on: 10/09/08 *" << endl;
  cout << "*          B. Boussau                       Last Modif: " << BPP_REL_DATE << " *" << endl;
  cout << "******************************************************************" << endl;
  cout << endl;

  if (args == 1)
  {
    help();
    return 0;
  }
  
  try {

  BppApplication bppancestor(args, argv, "BppAncestor");
  bppancestor.startTimer();

  Alphabet* alphabet = SequenceApplicationTools::getAlphabet(bppancestor.getParams(), "", false);
  unique_ptr<GeneticCode> gCode;
  CodonAlphabet* codonAlphabet = dynamic_cast<CodonAlphabet*>(alphabet);
  if (codonAlphabet) {
    string codeDesc = ApplicationTools::getStringParameter("genetic_code", bppancestor.getParams(), "Standard", "", true, true);
    ApplicationTools::displayResult("Genetic Code", codeDesc);
      
    gCode.reset(SequenceApplicationTools::getGeneticCode(codonAlphabet->getNucleicAlphabet(), codeDesc));
  }

  VectorSiteContainer* allSites = SequenceApplicationTools::getSiteContainer(alphabet, bppancestor.getParams());
  
  VectorSiteContainer* sites = SequenceApplicationTools::getSitesToAnalyse(* allSites, bppancestor.getParams(), "", true, false);
  delete allSites;

  ApplicationTools::displayResult("Number of sequences", TextTools::toString(sites->getNumberOfSequences()));
  ApplicationTools::displayResult("Number of sites", TextTools::toString(sites->getNumberOfSites()));
  
  // Get the initial tree
  Tree* tree = PhylogeneticsApplicationTools::getTree(bppancestor.getParams());
  ApplicationTools::displayResult("Number of leaves", TextTools::toString(tree->getNumberOfLeaves()));
  
  string treeWIdPath = ApplicationTools::getAFilePath("output.tree_ids.file", bppancestor.getParams(), false, false);
  if (treeWIdPath != "none")
  {
    TreeTemplate<Node> ttree(*tree);
    vector<Node *> nodes = ttree.getNodes();
    for(unsigned int i = 0; i < nodes.size(); i++)
    {
      if(nodes[i]->isLeaf())
        nodes[i]->setName(TextTools::toString(nodes[i]->getId()) + "_" + nodes[i]->getName());
      else
        nodes[i]->setBranchProperty("NodeId", BppString(TextTools::toString(nodes[i]->getId())));
    }
    Newick treeWriter;
    treeWriter.enableExtendedBootstrapProperty("NodeId");
    ApplicationTools::displayResult("Writing tagged tree to", treeWIdPath);
    treeWriter.write(ttree, treeWIdPath);
    delete tree;
    cout << "BppAncestor's done." << endl;
    exit(0);
  }

  bool checkTree = ApplicationTools::getBooleanParameter("input.tree.check_root", bppancestor.getParams(), true, "", true, false);

  DRTreeLikelihood *tl;
  string nhOpt = ApplicationTools::getStringParameter("nonhomogeneous", bppancestor.getParams(), "no", "", true, false);
  ApplicationTools::displayResult("Heterogeneous model", nhOpt);

  TransitionModel    *model    = 0;
  SubstitutionModelSet *modelSet = 0;
  DiscreteDistribution *rDist    = 0;
  size_t nbStates;

  if (nhOpt == "no")
  {  
    model = PhylogeneticsApplicationTools::getTransitionModel(alphabet, gCode.get(), sites, bppancestor.getParams());
    if (model->getName() != "RE08") SiteContainerTools::changeGapsToUnknownCharacters(*sites);
    if (model->getNumberOfStates() > model->getAlphabet()->getSize())
    {
      //Markov-modulated Markov model!
      rDist = new ConstantRateDistribution();
    }
    else
    {
      rDist = PhylogeneticsApplicationTools::getRateDistribution(bppancestor.getParams());
    }
    if (dynamic_cast<MixedSubstitutionModel*>(model))
      tl = new DRHomogeneousMixedTreeLikelihood(*tree, *sites, model, rDist, checkTree, true, true);
    else
      tl = new DRHomogeneousTreeLikelihood(*tree, *sites, model, rDist, checkTree);

    nbStates = model->getNumberOfStates();
  }
  else if (nhOpt == "one_per_branch")
  {
    model = PhylogeneticsApplicationTools::getTransitionModel(alphabet, gCode.get(), sites, bppancestor.getParams());
    if (model->getName() != "RE08") SiteContainerTools::changeGapsToUnknownCharacters(*sites);
    if (model->getNumberOfStates() > model->getAlphabet()->getSize())
    {
      //Markov-modulated Markov model!
      rDist = new ConstantRateDistribution();
    }
    else
    {
      rDist = PhylogeneticsApplicationTools::getRateDistribution(bppancestor.getParams());
    }
    vector<double> rateFreqs;
    if (model->getNumberOfStates() != alphabet->getSize())
    {
      //Markov-Modulated Markov Model...
      unsigned int n =(unsigned int)(model->getNumberOfStates() / alphabet->getSize());
      rateFreqs = vector<double>(n, 1./(double)n); // Equal rates assumed for now, may be changed later (actually, in the most general case,
                                                   // we should assume a rate distribution for the root also!!!  
    }
    
    std::map<std::string, std::string> aliasFreqNames;
    FrequenciesSet * rootFreqs = PhylogeneticsApplicationTools::getRootFrequenciesSet(alphabet, gCode.get(), sites, bppancestor.getParams(), aliasFreqNames, rateFreqs);
    
    vector<string> globalParameters = ApplicationTools::getVectorParameter<string>("nonhomogeneous_one_per_branch.shared_parameters", bppancestor.getParams(), ',', "");
    modelSet = SubstitutionModelSetTools::createNonHomogeneousModelSet(model, rootFreqs, tree, aliasFreqNames, globalParameters); 
    model = 0;
    if (dynamic_cast<MixedSubstitutionModelSet*>(modelSet))
      throw Exception("Non-homogeneous mixed substitution ancestor reconstruction not implemented, sorry!");
    tl = new DRNonHomogeneousTreeLikelihood(*tree, *sites, modelSet, rDist, true);
    nbStates = modelSet->getNumberOfStates();
  }
  else if (nhOpt == "general")
  {
    modelSet = PhylogeneticsApplicationTools::getSubstitutionModelSet(alphabet, gCode.get(), sites, bppancestor.getParams());
    if (modelSet->getModel(0)->getName() != "RE08") SiteContainerTools::changeGapsToUnknownCharacters(*sites);
    if (modelSet->getNumberOfStates() > modelSet->getAlphabet()->getSize())
    {
      //Markov-modulated Markov model!
      rDist = new ConstantDistribution(1.);
    }
    else
    {
      rDist = PhylogeneticsApplicationTools::getRateDistribution(bppancestor.getParams());
    }
    if (dynamic_cast<MixedSubstitutionModelSet*>(modelSet))
      throw Exception("Non-homogeneous mixed substitution ancestor reconstruction not implemented, sorry!");
    tl = new DRNonHomogeneousTreeLikelihood(*tree, *sites, modelSet, rDist, true);
    nbStates = modelSet->getNumberOfStates();
  }
  else throw Exception("Unknown option for nonhomogeneous: " + nhOpt);
  tl->initialize();
 
  delete tree;
    
  double logL = tl->getValue();
  if (std::isinf(logL))
  {
    // This may be due to null branch lengths, leading to null likelihood!
    ApplicationTools::displayWarning("!!! Warning!!! Likelihood is zero.");
    ApplicationTools::displayWarning("!!! This may be due to branch length == 0.");
    ApplicationTools::displayWarning("!!! All null branch lengths will be set to 0.000001.");
    ParameterList pl = tl->getBranchLengthsParameters();
    for(unsigned int i = 0; i < pl.size(); i++)
    {
      if(pl[i].getValue() < 0.000001) pl[i].setValue(0.000001);
    }
    tl->matchParametersValues(pl);
    logL = tl->getValue();
  }
  if (std::isinf(logL))
  {
    ApplicationTools::displayError("!!! Unexpected likelihood == 0.");
    ApplicationTools::displayError("!!! Looking at each site:");
    for(unsigned int i = 0; i < sites->getNumberOfSites(); i++)
    {
      (*ApplicationTools::error << "Site " << sites->getSite(i).getPosition() << "\tlog likelihood = " << tl->getLogLikelihoodForASite(i)).endLine();
    }
    ApplicationTools::displayError("!!! 0 values (inf in log) may be due to computer overflow, particularly if datasets are big (>~500 sequences).");
    exit(-1);
  }
  tree = new TreeTemplate<Node>(tl->getTree());

  // Write parameters to screen:
  ApplicationTools::displayResult("Log likelihood", TextTools::toString(tl->getValue(), 15));
  ParameterList parameters = tl->getSubstitutionModelParameters();
  for (unsigned int i = 0; i < parameters.size(); i++)
  {
    ApplicationTools::displayResult(parameters[i].getName(), TextTools::toString(parameters[i].getValue()));
  }
  parameters = tl->getRateDistributionParameters();
  for (unsigned int i = 0; i < parameters.size(); i++)
  {
    ApplicationTools::displayResult(parameters[i].getName(), TextTools::toString(parameters[i].getValue()));
  }

  // Getting posterior rate class distribution:
  DiscreteDistribution* prDist = RASTools::getPosteriorRateDistribution(*tl);
  ApplicationTools::displayMessage("\nPosterior rate distribution for dataset:\n");
  if (ApplicationTools::message) prDist->print(*ApplicationTools::message);
  ApplicationTools::displayMessage("\n");
  delete prDist;

  // Reconstruct ancestral sequences:
  string reconstruction = ApplicationTools::getStringParameter("asr.method", bppancestor.getParams(), "marginal", "", true, false);
  ApplicationTools::displayResult("Ancestral state reconstruction method", reconstruction);
  bool probs = false;

  AncestralStateReconstruction *asr = 0;
  bool probMethod = false;
  if (reconstruction == "none")
  {
    //do nothing
  } else if (reconstruction == "marginal") {
    asr = new MarginalAncestralStateReconstruction(tl);
    probMethod = true;
  } else
    throw Exception("Unknown ancestral state reconstruction method: " + reconstruction);

  string outputFile;
  if (asr) {
    if (probMethod)
    {
      probs = ApplicationTools::getBooleanParameter("asr.probabilities", bppancestor.getParams(), false, "", true, false);
      ApplicationTools::displayResult("Output probabilities", probs ? "yes" : "no");
    }

    // Write infos to file:
    outputFile = ApplicationTools::getAFilePath("output.sites.file", bppancestor.getParams(), false, false);
    if (outputFile != "none")
    {
      ApplicationTools::displayResult("Output file for sites", outputFile);
      ofstream out(outputFile.c_str(), ios::out);
      TreeTemplate<Node> ttree(*tree);
      vector<Node *> nodes = ttree.getInnerNodes();
      size_t nbNodes = nodes.size();
    
      // Get the rate class with maximum posterior probability:
      vector<size_t> classes = tl->getRateClassWithMaxPostProbOfEachSite();
      // Get the posterior rate, i.e. rate averaged over all posterior probabilities:
      Vdouble rates = tl->getPosteriorRateOfEachSite();
      // Get the ancestral sequences:
      vector<Sequence*> sequences(nbNodes);
      vector<VVdouble*> probabilities(nbNodes);

      vector<string> colNames;
      colNames.push_back("Sites");
      colNames.push_back("is.complete");
      colNames.push_back("is.constant");
      colNames.push_back("lnL");
      colNames.push_back("rc");
      colNames.push_back("pr");
      for (size_t i = 0; i < nbNodes; i++) {
        Node *node = nodes[i];
        colNames.push_back("max." + TextTools::toString(node->getId()));
        if (probs) {
          probabilities[i] = new VVdouble();
          //The cast will have to be updated when more probabilistic method will be available:
          sequences[i] = dynamic_cast<MarginalAncestralStateReconstruction *>(asr)->getAncestralSequenceForNode(node->getId(), probabilities[i], false);

          for (unsigned int j = 0; j < nbStates; j++) {
            colNames.push_back("prob." + TextTools::toString(node->getId()) + "." + alphabet->intToChar((int)j));
          }
        }
        else
        {
          if (node->isLeaf()) {

          } else {
            sequences[i] = asr->getAncestralSequenceForNode(node->getId());
          }
        }
      }

      //Now fill the table:
      vector<string> row(colNames.size());
      DataTable* infos = new DataTable(colNames);
    
      for (size_t i = 0; i < sites->getNumberOfSites(); i++)
      {
        double lnL = tl->getLogLikelihoodForASite(i);
        const Site* currentSite = &sites->getSite(i);
        int currentSitePosition = currentSite->getPosition();
        string isCompl = "NA";
        string isConst = "NA";
        try { isCompl = (SiteTools::isComplete(*currentSite) ? "1" : "0"); }
        catch(EmptySiteException& ex) {}
        try { isConst = (SiteTools::isConstant(*currentSite) ? "1" : "0"); }
        catch(EmptySiteException& ex) {}
        row[0] = (string("[" + TextTools::toString(currentSitePosition) + "]"));
        row[1] = isCompl;
        row[2] = isConst;
        row[3] = TextTools::toString(lnL);
        row[4] = TextTools::toString(classes[i]);
        row[5] = TextTools::toString(rates[i]);

        size_t k = 6;
        for (size_t j = 0; j < nbNodes; j++) {
          row[k] = sequences[j]->getChar(i);
          k++;
          if (probs) {
            for (size_t l = 0; l < nbStates; l++) {
              row[k] = TextTools::toString((*probabilities[j])[i][l]);
              k++;
            }
          }
        }

        infos->addRow(row);
      }

      DataTable::write(*infos, out, "\t");

      delete infos;
    }

    SiteContainer* asSites = 0;
    if (probMethod)
    {
      bool sample = ApplicationTools::getBooleanParameter("asr.sample", bppancestor.getParams(), false, "", true, false);
      ApplicationTools::displayResult("Sample from posterior distribution", sample ? "yes" : "no");
      if (sample)
      {
        unsigned int nbSamples = ApplicationTools::getParameter<unsigned int>("asr.sample.number", bppancestor.getParams(), 1, "", true, false);
        asSites = new AlignedSequenceContainer(alphabet);
        for (unsigned int i = 0; i < nbSamples; i++)
        {
          ApplicationTools::displayGauge(i, nbSamples-1, '=');
          SequenceContainer *sampleSites = dynamic_cast<MarginalAncestralStateReconstruction *>(asr)->getAncestralSequences(true);
          vector<string> names = sampleSites->getSequencesNames();
          for (unsigned int j = 0; j < names.size(); j++)
            names[j] += "_" + TextTools::toString(i+1);
          sampleSites->setSequencesNames(names, false);
          SequenceContainerTools::append(*asSites, *sampleSites);
          delete sampleSites;
        }
        ApplicationTools::message->endLine();
      }
      else
      {
        asSites = asr->getAncestralSequences();
      }
    }
    else
    {
      asSites = asr->getAncestralSequences();
    }
  
    //Add existing sequence to output?
    bool addExtant = ApplicationTools::getBooleanParameter("asr.add_extant", bppancestor.getParams(), false, "", true, false);
    if (addExtant) {
      SequenceContainerTools::append(*asSites, *sites);
    }

    //Write output:
    if (ApplicationTools::getStringParameter("output.sequence.file", bppancestor.getParams(), "none") != "none") {
      SequenceApplicationTools::writeAlignmentFile(*asSites, bppancestor.getParams());
    }
    delete asSites;

    delete asr;
  }

  outputFile = ApplicationTools::getAFilePath("output.nodes.file", bppancestor.getParams(), false, false);
  if (outputFile != "none")
  {
    ApplicationTools::displayResult("Output file for nodes", outputFile);
    ofstream out(outputFile.c_str(), ios::out);

    //Add existing sequence to output?
    bool addExtant = ApplicationTools::getBooleanParameter("output.nodes.add_extant", bppancestor.getParams(), false, "", true, false);
    
    map<int, vector<double> > frequencies;
    TreeLikelihoodTools::getAncestralFrequencies(*tl, frequencies, addExtant);
    
    vector<string> colNames;
    colNames.push_back("Nodes");
    for (unsigned int i = 0; i < tl->getNumberOfStates(); i++)
      colNames.push_back("exp" + tl->getAlphabetStateAsChar(i));
    for (unsigned int i = 0; i < tl->getNumberOfStates(); i++)
      colNames.push_back("eb" + tl->getAlphabetStateAsChar(i));

    //Now fill the table:
    vector<string> row(colNames.size());
    DataTable* infos = new DataTable(colNames);
    
    for (map<int, vector<double> >::iterator it = frequencies.begin(); it != frequencies.end(); it++)
    {
      row[0] = TextTools::toString(it->first);
      Vdouble ebFreqs = DRTreeLikelihoodTools::getPosteriorStateFrequencies(*tl, it->first);
      for (unsigned int i = 0; i < tl->getNumberOfStates(); i++)
      {
        row[i + 1] = TextTools::toString(it->second[i]);
      }
      for (unsigned int i = 0; i < tl->getNumberOfStates(); i++)
      {
        row[i + tl->getNumberOfStates() + 1] = TextTools::toString(ebFreqs[i]);
      }
      infos->addRow(row);
    }
    
    DataTable::write(*infos, out, "\t");

    delete infos;
  }


  delete alphabet;
  delete sites;
  if(model)    delete model;
  if(modelSet) delete modelSet;
  delete rDist;
  delete tl;
  delete tree;
  bppancestor.done();

  }
  catch (exception & e)
  {
    cout << e.what() << endl;
    return 1;
  }

  return 0;
}